July 2022 REVIEW: OPTIONS FOR MANAGING AND TRACING WILD ANIMAL TRADE CHAINS TO REDUCE TOONOTIC TOONOTIC

TRAFFIC REPORT

ABOUT US

TRAFFIC is a leading non-governmental organisation working globally on trade in wild animals and plants in the context of both biodiversity conservation and sustainable development.

Reproduction of material appearing in this report requires written permission from the publisher.

The designations of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of TRAFFIC or its supporting organisations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.

ABOUT PARTNER

The United States Agency for International Development (USAID) works to end extreme poverty and promote resilient, democratic societies while advancing security and prosperity for America and the world. USAID partnerships and investments save lives, reduce poverty, strengthen democratic governance, and help people emerge from humanitarian crises and progress beyond assistance.

PROJECT LEADER

Any questions on this Review should be directed to James Compton: james.compton@traffic.org

PUBLISHED BY:

TRAFFIC International, Cambridge, United Kingdom.

SUGGESTED CITATION

OPTIONS FOR MANAGING AND TRACING WILD ANIMAL TRADE CHAINS TO REDUCE ZOONOTIC DISEASE RISK (2022). Sam Campbell, Anastasiya Timoshyna, Glenn Sant, Duan Biggs, Alexander Braczkowski, Hernan Caceres-Escobar, Karlina Indraswari, James Compton, and Hubert Cheung. TRAFFIC, Cambridge UK.

Note: Case studies were prepared by DB, AB, HC-E, KI and HC of Resilient Conservation, at Griffith University's Centre for Planetary Health and Food Security, in collaboration with TRAFFIC.

© TRAFFIC 2022. Copyright of material published in this report is vested in TRAFFIC. UK Registered Charity No. 1076722

DESIGN Francesca Marcolini

ACKNOWLEDGEMENTS

The authors would like to extend their appreciation to Nick Ahlers, Nga Bui, Markus Burgener, Qudra Kagembe, Francesca Marcolini, Melissa Matthews, Bryony Morgan, Teresa Mulliken, David Newton, Viet Anh Nguyen, Caitlin Schindler, Julie Thomson, Stephanie von Meibom, and other TRAFFIC colleagues for their expert inputs and reviews.

This Review was generously supported by the American People through USAID via the Wildlife Trafficking Response, Assessment, and Priority Setting (Wildlife TRAPS) project, implemented by TRAFFIC in collaboration with IUCN. The contents are the responsibility of the authors and do not necessarily reflect the opinion of USAID or the U.S. Government.

We would also like to extend heartfelt thanks to Celia Abolnik, the Australian Government's Department of Agriculture, Fisheries and Forestry, Anel Engelbrecht, Amanda Fine, Tiggy Grillo, Douglas Jobson, Dennis King, Richard Kock, the Marine Stewardship Council, Michael O'Leary, Pawin Padungtod, Ekta Patel, Joey Potgieter, ProFound, Stéphane Ringuet, Mark Ryan, Fred Unger, and others working on reducing zoonotic disease risks associated with wild animal trade for their time, perspectives and insights.

Thanks also to the team at Prophet for their research and analytical insights on Viet Nam's wild animal trade chain structure.

CASE STUDIES: WILD ANIMAL SUPPLY CHAINS MANAGING FOR DISEASE RISKS

LESSONS FOR IMPROVING SUPPLY CHAIN MANAGEMENT AND TRACEABILITY

CONTENTS

page 4

Abbreviations and Nomenclature

page 8 **RECOMMENDATIONS**

page 10 EXECUTIVE SUMMARY

page 12 INTRODUCTION

Purpose and Objectives	14
Methodology and Limitations	15

page 16

EVALUATING SUPPLY CHAIN RISK FACTORS

.....

page 22

REGULATORY CONTEXTS FOR TRACEABILITY

page 24

TRACEABILITY MECHANISMS TO CONSIDER FOR TRADE CHAINS IN WILD MAMMALS AND BIRDS

page 30

Australia's kangaroo meat industry	31
South Africa's ostrich meat industry	40
France's venison trade	44

page 51

page 54 GAPS AND OPPORTUNITIES

page 58 Annexes

page 66 Endnotes

ABBREVIATIONS

AEMIS	Australian Export Meat Inspection System	For this Deview the terms up	and are taken to have the following d	
AI	Avian Influenza	For this Review, the terms us		
APC	Aerobic Plate Count			
CBD	Convention on Biological Diversity	TERM	MFANING	
CITES	Convention on International Trade in Endangered Species	Control measure	Any action and activity that can be	
CCP	Critical Control Point	Control measure	or reduce it to an acceptable level.	
CPTPP	Comprehensive and Progressive Agreement for Trans-Pacific Partnership	Critical Control Point	A step at which control can be app	
CPW	Collaborative Partnership on Sustainable Wildlife Management	(CCP)	food safety hazard or reduce it to a	
CSIRO	Australia's Commonwealth Scientific and Industrial Research Organisation	Domesticated species	Species bred in captivity and modi more 'useful' to humans, who cont	
CTE	Critical Tracking Events		protection against predators) and	
DAFF	South Africa's Department of Agriculture, Forestry and Fisheries	Farmed, captive-bred,	In wild animal and plant trade, suc	
ALRRD	South Africa's Department of Agriculture, Land Reform and Rural Development	or cultivated	modes distinct from 'wild-sourcing controlled conditions	
EC	European Commission	Hazard	An agent (physical, chemical, or bi	
EID	Emerging Infectious Disease		health effects.	
EU	European Union	Hazard Analysis and	A system that identifies, evaluates	
FAO	Food and Agriculture Organization of the United Nations	(HACCP)		
FSC	Forest Stewardship Council	Illegal wildlife trade	Wildlife commerce in contraventio	
HACCP	Hazard Analysis and Critical Control Points	5	include legislation or regulations re	
HPAI	Highly Pathogenic Avian Influenza		protection; animal welfare; taxatio	
IGO	Intergovernmental Organisation	Monitor	The act of conducting a planned s	
ILRI	International Livestock Research Institute		control parameters to assess whe	
IUCN	International Union for Conservation of Nature			
IWT	Illegal Wildlife Trade			
KDE	Key Data Elements			
LPAI	Low Pathogenicity Avian Influenza	One Health	optimise the health of people, anin	
MEDC	Meat Export Data Collection system			
MSC	Marine Stewardship Council		It recognises that the health of hui wider environment (including ecos	
NGO	Non-Governmental Organisation		their entrient (moldaling cooc	
OIE	World Organisation for Animal Health (name now changed to WOAH)		The approach mobilises multiple s	
OPV	On-Plant Veterinarian		and ecosystems, while addressing	
R CODE	Quick Response code		air, safe and nutritious food, taking	
RFID	Radio-Frequency Identification		sustainable development.	
SBC	Social and Behaviour Change			
SRA	State Represented Authority or State Regulatory Authority			
UNEP	United Nations Environment Programme	Risk	The estimated probability and seve	
USAID	United States Agency for International Development		exposure to a hazard.	
VPN	Veterinary Procedural Notice	Supply chain	The entire stream from harvest (fa	
WOAH	World Organisation for Animal Health (formerly OIE)	Traceability	The capacity to find information a	
WHO	World Health Organization	maceapinty	conditions a product was made.	
WWF	World Wide Fund for Nature	Wet market	A marketplace selling fresh meat,	

and electronics.

definitions^{i, ii}:

NOMENCLATURE

- be used to prevent or eliminate a food safety hazard el.
- oplied and is essential to prevent or eliminate a open an acceptable level.
- dified from their wild ancestors to make them ntrol their reproduction (breeding), care (shelter, d food supply.
- uch terms designate management and production ng, with breeding and raising taking place in
- biological) with the potential to cause adverse
- es, and controls hazards significant for food safety.
- ion of a relevant legal provision. These could related to one or more policy concerns: e.g., ghts; nature conservation; human or animal health ion or other fiscal provisions.
- sequence of observations or measurements of ther a CCP is under control.
- ving approach that aims to sustainably balance and imals and ecosystems.
- umans, domestic and wild animals, plants, and the osystems) are closely linked and interdependent.
- e sectors, disciplines and communities at varying r to foster well-being and tackle threats to health ng the collective need for clean water, energy and ng action on climate change, and contributing to
- everity of adverse health effects following the
- farming in some cases) to processing of a wildlife the ultimate consumer.
- about where, how, and under what regulatory
- A marketplace selling fresh meat, fish, produce, or other perishable goods (including vegetables) as distinct from 'dry markets' that sell durable goods such as fabrics

Wild meat	Meat from wild animals (see 'Wildlife' below). In some countries, the term bushmeat is used to indicate illegally acquired wild (or wildlife-) meat, whereas wild meat can also be game meat from licensed butcheries. This Review focuses on meat from terrestrial wild animals, especially mammals and birds.
Wild species	Non-domesticated wildlife species.
Wild sourced	Wild animals, plants, fungi, or products collected or harvested from free-living (non- captive) populations.
Wildlife	In line with the IUCN definition: 'Living things that are neither human nor domesticated.'
Wildlife market	A venue (physical or online) where wildlife trade is active.
Wildlife pet / Exotic pet	A companion animal living with people that is generally thought of as a wild species rather than a domesticated one.
Wildlife trade	The local or domestic and international commerce in wildlife, inclusive of parts and products derived from them.
Zoonotic disease / Zoonosis ^{iv}	As defined by the World Health Organization (WHO):
	A zoonosis is any disease or infection that is naturally transmissible from vertebrate animals or an animal reservoir to humans, either directly, or indirectly through a vector or food-borne.

'Zoonotic disease' describes a disease that first originated in non-human animals, even when the disease is no longer transmitted from animals but continues to circulate within human populations.

g/3/y1579e/y1579e03.htm ets/files/12893/wildlife-trade-and-zoonotic-disease-lex /item/01-12-2021-tripartite-and-unep-support-ohhlep-s-definition-o

RECOMMENDATIONS

Based on this review, these priority recommendations have emerged for those working to improve wild animal supply chain management and traceability across various geographical contexts. TRAFFIC welcomes opportunities for collaboration with cross-sectoral partners in any of these steps:

IMPROVE COMMUNICATION AND COLLABORATION

Governments improve communication and collaboration among agencies working on public health, animal health, environmental health, wildlife trade management and collaborating institutions such as Customs and law enforcement agencies. Establishing One Health working groups can help to formalise this cooperation in countries where they are not already established.

IDENTIFY AND ADDRESS RISKS

Government authorities, IGOs, NGOs, donor agencies, and experts working in public health, animal health (inclusive of wildlife health), food safety, natural resource management, law enforcement and Customs collaborate to:

- Establish minimum biosecurity standards for legal wild animal trade:
- Identify and regulate different levels of risks, i.e., which forms of wild animal trade and consumption are unsafe, which ones need special conditions, and which ones are safe in their current state;
- Test supply chain management and traceability approaches across different wild animal trade systems, with adaptation to context-specific risks for safety and sustainability. These groups work closely with wild animal trade stakeholders to implement more transparent practices and regularly monitor and strengthen these practices through feedback loops, while sharing lessons learned via publicly accessible guidance materials.

Wild animal trade stakeholders map their respective supply chains to understand and mitigate risks to safety, sustainability, and legality. This mapping could be either voluntary or required by government regulators.

Technology companies develop simple, low-cost digital tools for improved supply chain management and traceability, and train developing country government partners in the use and dissemination of these tools to wild animal trade stakeholders.

BEHAVIOURS safer behaviours.

Experts in social and behaviour change (SBC) work with government authorities and wild animal trade stakeholders to assess the role of risky behaviours along these trade chains and formulate SBC approaches to support the sustained adoption of

INCREASE SUPPLY CHAIN TRANSPARENCY

governments.

SHARE GLOBAL **EXPERIENCE**

SHARE AGENCY RESOURCES

APPLY GUIDELINES

INTEGRATE COSTS

SUPPORT MEASURES

FINANCIALLY

Businesses and associations with expertise in animal supply chain management and traceability to explore the costs of adapting such systems to priority wild animal trade chains, emphasising a systems-based approach and attention to the needs of less regulated contexts. These experts could develop strategies in partnership with wild animal trade stakeholders to integrate these costs along a particular trade chain to minimise any adverse effects on stakeholder livelihoods.

vi https://cites.org/sites/default/files/eng/com/sc/74/E-SC74-16.pdf

MAP SUPPLY CHAINS

DIGITAL TOOLS SUPPORT SAFER

DEVELOP AND DISSEMINATE

8 OPTIONS FOR MANAGING AND TRACING WILD ANIMAL TRADE CHAINS TO REDUCE ZOONOTIC DISEASE RISK

The exotic pet industry, zoo associations, and members of the scientific research community involved in live wild animal trade pilot approaches to increase the transparency of their respective wild animal supply chains and share best practices with relevant IGOs (e.g., the Quadripartite of WOAH, WHO, FAO, and UNEP, as well as the Secretariats of CITES and CBD) for dissemination to national

Governments with established regulations for wild animal trade management, including measures to reduce disease transmission risk, proactively share these frameworks and experiences with the global community. This will support ongoing work by CITES^{vi} Parties to minimise the risk of future zoonotic disease emergence associated with international wildlife trade.

Government agencies involved in food safety regulation to share knowledge and resources with agencies working on wild animal trade management.

National focal points for WOAH, working with inter-agency partners across the One Health spectrum, to begin applying the Draft Guidelines for Reducing the Risk of Disease Spillover Events at Markets Selling Wildlife. At the time of publication, these Guidelines were being prepared by a WOAH Ad Hoc Group expert consultation process and are expected to be made public in 2022.

Donor agencies and private sector partners financially support small-scale trade chain actors in adopting traceability measures.

EXECUTIVE SUMMARY

The COVID-19 pandemic and the SARS-CoV-2 virus's suspected wild animal origins¹, ², ³ have spurred fresh consideration of how to reduce zoonotic disease risks associated with wild animal trade. This Review assesses existing systems for managing and tracing wild animal trade chains to determine best practices for interventions that are context-specific to increase participation and effectiveness. The guiding principle for these management interventions is that where wild animal trade takes place, it should be closely monitored to ensure legality and improve sustainability and safety⁴.

Wild meat sold and cooked at a restaurant, Tanzania

This Review is supported by in-depth assessments of three established wild animal trade systems where some degree of disease risk management is already in place:

- Australia's kangaroo meat industry
- South Africa's ostrich meat industry
- France's venison trade

Lessons from these systems and a range of supply chain management and traceability tools from other trades are examined for potential adaptation to other wild animal trade contexts. The focus in assessing each of these examples has concentrated on reducing health risks. However, parallel risks to sustainability and legality also have the potential to be reduced through a more integrated approach to improved supply chain management and traceability. A key assumption for this review is that the more transparent and better managed a trade system is, the easier it would be to identify and monitor potential risks and weed out any illegal, unsustainable or unsafe practices.

When considering the variety of global wild animal trade systems beyond this Review's case studies, there is a broad need for more coherent regulation and monitoring. Trade in domestic livestock has comparatively well-developed biosecurity measures for disease risk reduction, and these measures can be adapted to wild animal trade to build on existing knowledge, regulations, and infrastructure.

The potential for zoonotic disease emergence in wild animal trade can be more complex than in domestic livestock trade due to the diversity of species in trade. Several principles emerge to help prioritise and reduce these risks5:

- The risk of zoonotic spillover to humans tends to be higher via wild mammal and wild bird taxa:
- Trade in live animals presents the highest risks compared to other wild animal products, followed by raw meat;
- Disease risks may be amplified along lengthy trade chains with more intermediaries;

Risks are higher where different species come into contact with each other (including contact with domestic animals and humans).

In implementing traceability for legal wild animal trade chains, technological tools like Apps may help gather and share data, but more important is to map the supply chain and implement consistent monitoring and data gathering at crucial risk points, regardless of the tool used.

While a complete list of recommendations can be found in the Recommendations chapter of this Review, a selection is presented here:

Governments improve communication and collaboration among agencies working on public health, animal health, environmental health, wildlife trade management and their implementing partners such as Customs and law enforcement;

Government agencies involved in food safety regulation share knowledge and resources with agencies working on wild animal trade management;

Government authorities, donor agencies, and experts working in public health, animal health, food safety, natural resource management, law enforcement, and Customs collaborate to test supply chain management and traceability approaches across different wild animal trade systems, and to establish minimum biosecurity standards for legal wild animal trade;

Wild animal trade stakeholders map their respective supply chains to understand and mitigate risks to safety, sustainability, and legality;

Businesses and associations with expertise in animal supply chain management and traceability explore the costs of adapting such systems to priority wild animal trade systems, particularly in less regulated contexts.

Donor agencies and private sector partners financially support smallscale trade chain actors in adopting traceability measures.

INTRODUCTION

COVID-19 has pushed governments, businesses, civil society organisations, and individuals to rethink the risks and probability of pandemics. In considering what measures are needed to prevent future diseases with pandemic potential, a critical approach is to manage human-animal interactions such as wild animal trade that may enable spillover of zoonotic diseases.

Wildlife trade includes domestic and international commerce in a wide range of terrestrial, marine, and freshwater wild species of fauna, flora, and fungi. This Review focuses on trade in wild animals and parts and products derived from these animals, particularly terrestrial wild mammals and birds, based on the relatively higher risk of zoonotic disease transmission from these taxonomic groups⁶⁷. Globally, the diversity of species, trade systems, and national legal contexts involved in wild animal trade requires interventions that are both focused and adaptive. Supply chain management and traceability are assessed as tools for improving transparency and reducing disease risks across different trade systems and contexts.

Traceability enables better understanding of a supply chain by monitoring critical points in the chain to gather data on where, how, and under what regulatory conditions a product was made. A traceability system may focus on a particular aspect of production, such as the legality or sustainability of product sourcing, fair treatment of the supply chain's workers, production quality (e.g., organic, halal, etc.), and monitoring for health risks, as is the focus of this Review.

Monitoring for health risks commonly focuses on food safety concerns like contamination and spoilage⁸, but in domestic and wild animal supply chains, the need to also monitor for emerging zoonotic diseases is increasingly apparent. There is a growing need to ensure the trade in wild animals carries minimal risk of emerging infectious diseases (EIDs),

is ecologically sustainable, and is legal9. Traceability, therefore, can be used to monitor and reduce risks of zoonotic disease emergence within wild animal supply chains.

At the most basic level, traceability gathers data to answer "where" and "when" critical events in the supply chain occur.

- **Tracing** moves from the end-consumer backwards along the supply chain to the producer and, where relevant, the producer's suppliers to mitigate risks before they become problematic.
- **Tracking**, in contrast, moves forward along the supply chain from source to consumer and can be used to find and recall risky products after a problem is discovered.

A traceability system captures the type and volume of products traded and the actors involved in any transactions. When the volume of goods changes, this can serve as a red flag that unauthorised products may have been mixed with the authorised products. A red flag enables an investigation at the point where it's raised or at any previous points¹⁰. Information in a traceability system may allow full access to all users or be limited to authorities to monitor, comply, and preserve confidential business information.

Traceability is sometimes conflated with certification. A certification scheme can document and market a supply chain's adherence to a social or environmental standard, which often relies on being able to trace the supply chain. However, certification is an additional step on top of traceability, and is therefore not a required step in tracing a supply chain. Certification can incur a high cost that is not feasible for smaller businesses¹¹

A holistic approach to pandemic prevention will need to also consider livestock as hosts or carriers of potential zoonoses and which interact with wild animals to amplify disease spillover risk. Zoonotic transmission from livestock occurs at a much higher rate than from wild animals, partly because of the much higher numbers of livestock and their much larger role in our food chains than wild animals¹² ¹³. Traceability is already used in domestic livestock and poultry supply chains, suggesting such approaches could be adapted to wild animal supply chains to minimise risks¹⁴.

Mapping a supply chain and its risk points, which is the foundation for implementing traceability, offers a data-driven approach to assess the supply chain's safety and transparency and inform policy recommendations. From a zoonotic disease perspective, different forms of wild animal trade present different types and levels of risk; reducing these risks therefore calls for diverse

FIGURE 1

Generic wildlife supply chain showing interfaces at which pathogens have been documented. *NB: Local holding is also an important source point needing to be managed for potential disease risk (in possibly unsanitary conditions) and slaughtering of wild specimens can occur at any point up until the end-user. Source: Dr. John Berezowski, adapted from Stephen C, Berezowski J et al. (2021). (Link in footnote¹⁵)

solutions.

consumption:

1. Wild animal meat

З.

As noted in the Methodology & Limitations section, these three use types carry important differences in their relative risks of zoonotic disease transmission, while specific wild animal trade chains have further variations in risk. The traceability and supply chain management lens allows regulatory decisions to be evidence-based and context-specific to promote successful implementation and disease risk reduction.

The authors of this Review considered three main use types for wild animal trade and

2. Wild animal-derived medicines, and

Live wild animals kept as pets or used for scientific research or display.

PURPOSE AND OBJECTIVES

The emergence of SARS-CoV-2 brought increased attention to the potential zoonotic disease risks associated with trade in wild animals. As a result, the Wildlife TRAPS Project, a long-standing partnership between USAID, TRAFFIC and IUCN, refocused its objectives on finding solutions to prevent future pandemics by improving the safety and sustainability of legal wild animal trade. In tandem with efforts to support policy and regulatory reform, this is being addressed through two main workstreams:

1. Supply chain management and traceability to reduce risks and improve transparency from source to consumer in legal wild animal trade chains; and

2. Social and behaviour change (SBC) to direct consumers and stakeholders in wild animal trade toward safe, sustainable, legal products and practices.

Foundational research was conducted via a situation analysis of SBC messaging on wild animal trade and zoonotic disease risks, published in December 2021¹⁶, and this Review on supply chain management and traceability. Both publications will support the planning of pilot interventions in countries engaged by TRAFFIC and its partners.

The primary objectives of this Review are to:

1. Review criteria for evaluating risks in wild animal supply chains, especially risks to human and animal health and safety;

2. Examine current national and international policy and regulatory contexts of traceability for trade in wild animal products, particularly

for sanitary control measures and animal and human health and safety requirements;

3. Review current options for traceability data management tools that are simple and affordable:

a. Consider which tools could best be adapted to managing less regulated wild animal trade chains in a developing country context;

4. Document and assess case study examples of wildlife trade chains already practising coordinated supply chain management and traceability with a focus on health risk reduction:

a. Gather best practices and lessons learned;

b. Identify key actors (government, nongovernment, private sector, and standardholding organisations) for:

i. Risk mitigation at critical points in supply chains;

ii. Influence and willingness to engage;

5. Analyse lessons learned from relevant wildlife supply chain management and traceability initiatives to date;

6. Determine gaps and opportunities:

a. Outline priorities for pilot projects to reduce zoonotic disease risks

7. Recommend what could be adapted or better implemented and enforced to mitigate risks of zoonotic disease transmission in wild animal supply chains.

METHODOLOGY AND LIMITATIONS

This review was conducted through primary and secondary research using multiple methods. Primary components included individual and group discussions with supply chain management experts and stakeholders. Secondary elements focused on a deskbased literature review of online reports and publications from NGOs, IGOs, national government authorities, scientific journals, and media outlets. A bibliography for the literature review is included in Annex II.

The authors note three main limitations of this Review. Whereas this Review was initially intended to consider wild animal supply chain management through the three lenses of safety, sustainability, and legality, one limitation was that the examples reviewed focused primarily on health risks and mitigation ('safety').

In drafting this Review, the authors considered three major categories of wild animal use: wild animal meat, wild animal-derived medicines, and live animals kept as pets or for display or scientific research. A second limitation of this Review is that its case study examples focus mainly on trade chains for wild animal meat. These wild meat trade chains include live animals early in the chain and meat products at the consumer end. Food production is a particularly relevant use type based on the varying risks of pathogen transmission from handling live animals, meat processing, and meat consumption. Food safety is a wellexplored lens for traceability and disease risk reduction. Wild animal-derived medicines,

in contrast, tend to be highly processed and therefore carry fewer risks of zoonotic pathogen transmission to consumers compared with meat, but may still have important risks when production involves live animals and unprocessed animal parts. Lastly, since human interactions with live wild animals are an important risk interface, there is a need to further investigate live wild animal trade chains for exotic pets, display, and scientific research. This Review found the most available references related to wild meat trade compared to the other use types, hence its focus.

A third limitation was in bridging the gap between lessons learned from established supply chain management mechanisms in highly regulated trades, and the situation of wild animal trade in less developed countries. Differential factors could include less government capacity for monitoring animal health linked to wildlife trade, in conjunction with varying levels of regulation, compliance and enforcement for wild animal trade. The selected case studies provide a starting point for assessing wild animal supply chain management, but in relation to the great diversity in global wild animal trade systems, they represent only a part of the overall situation. Efforts to address these limitations included in-depth discussions with experts and stakeholders regarding the less regulated wild animal supply chains throughout Asia and Africa and experts in animal and human health. A list of individuals interviewed can be found in Annex III.

EVALUATING SUPPLY CHAIN RISK FACTORS

The diversity of legal wild animal trade in different countries calls for informed. context-specific solutions. In assessing the suitability of supply chain management and traceability interventions to improve the safety and sustainability of a particular wild animal supply chain, it is important to evaluate the risks specific to the species, product or form in trade, and the number and type of transaction points that involve human-animal interfaces from source to end-user.

A February 2021 report by the World Wide Fund for Nature (WWF) on "Assessing risk factors for viral disease emergence within the wildlife trade" ¹⁷ groups the potential risks of zoonotic spillover and disease emergence within three categories, with several questions to guide assessment:

1. Hazard:

a. What is the animal species' phylogenetic proximity to humans?

b. Have they been known to carry zoonotic diseases in the past?

c. How many different species are involved? d. Are the animal products in trade alive, raw,

cooked, or a mixture of these? e. Under what conditions are the animals

being kept?

2. Vulnerability:

a. Are there hygiene rules at the market? **b.** How good is the government's capacity to fairly enforce policies, rules and regulations? **c.** What is the standard of washing facilities in processing facilities and markets? d. How often does disease testing, surveillance, monitoring and evaluation take place?

3. Exposure:

a. How long is the supply chain? **b.** Were any of the species taken from a deforestation frontier zone? **c.** Is it a rural or an urban market?

FIGURE 2

The risk of zoonotic disease emergence and spillover can be assessed as a function of three dimensions: hazard, vulnerability, and exposure. Each of the three dimensions has three to four sub-variables, resulting in a composite risk score. Source: WWF (see link in footnote ¹⁸)

In carrying out this type of gualitative risk assessment, WWF recommends several foundational principles to keep in mind¹⁹:

i. Mammals and birds are the highest risk taxa for disease spillover to humans, especially bats, rodents, and primates; **ii.** Live animals pose a greater risk for disease emergence than dead animals. Smoked, dried, fermented, and frozen carcasses have not been shown to transmit pathogens;

iii. Longer trade chains carry greater risks and more chances for viral amplification:

a. Some animals, such as Malayan pangolins, showed no sign of coronavirus when seized in their country of origin²⁰, but contained coronaviruses closely related to SARS-CoV-2 when seized at the end of their trade route²¹. Farmed rodents and porcupines in Viet Nam already had avian and bat coronaviruses at the farm level, but the presence of these coronaviruses increased 10-fold at the restaurant level at the end of the trade chain²²;

animal markets;

on hygiene;

hygiene oversight;

- iv. Mixing live wild and domestic species increases the risk of transmission at any point in the trade chain, but especially in live
- v. Weak governance and poor market infrastructure increase risk:
- a. Africa and Asia have a large informal food sector that is not regulated and does not follow central government legislation
- vi. The most vulnerable people include:
- **a.** Hunters in the forest who come into contact with live animals;
- **b.** Food handlers living near, or working in, live animal markets;
- c. Staff and customers in contact with caged live animals in a restaurant;
- vii. Varying effects of market size on risk:
- a. Small rural markets risk exposure to small numbers of people but may have poorer
- b. Big urban markets risk exposure to more people but may have stricter hygiene
- monitoring and enforcement²³.

FIGURE 3

A proposed hazard hierarchy of species in trade. Source: WWF (see link in footnote²⁴)

INTERGOVERNMENTAL GUIDANCE FOR RISK EVALUATION

In evaluating risks along the supply chain, the Comprehensive and Progressive Agreement for Trans-Pacific Partnership (CPTPP) recommends identifying which areas of the trade are disease risk-free versus which areas have higher risk levels to tailor monitoring efforts²⁵. This allows limited budgets and staff capacity to be applied where they can be most effective. Priority monitoring points may also look for bottlenecks of compliance activity in the supply chain, such as crucial processing or collection points. The USAID-funded Targeting Natural Resource Corruption²⁶ (TNRC) project provides a helpful example for mapping the various risk points along the length of a wild animal supply chain. The risk lens for this TNRC work was in mapping corruption, but the approach can easily be adapted to mapping disease risk points.

In December 2020, the Tripartite organisations (the World Health Organization (WHO), the Food and Agriculture Organization of the United Nations (FAO), and the World Organisation for Animal Health (formerly OIE, recently renamed WOAH)) released their Joint Risk Assessment Operational Tool²⁷, which provides guidance on how to set up a zoonotic disease risk self-assessment at the national level. This kind of scientific framework enables the development of sound risk management policy and communications, bringing together cross-sectoral expertise from the animal health, human health, and environmental health communities for a holistic One Health response. Even beyond the wild animal trade, no product or supply chain can be guaranteed 100% safe, but a robust risk assessment allows risks to be managed to an acceptable standard.

EVALUATING RISKS AT THE NATIONAL LEVEL: VIET NAM

In Viet Nam, TRAFFIC has conducted an initial trade chain analysis of wild animals and their products used for meat and attributed medicinal benefits (i.e., formal and informal traditional medicine use). The research focused on six groups of animals commonly traded for these uses in Viet Nam, which are known to carry zoonotic pathogens: bats, rats, macaques, pangolins, civets, and birds. This national-level qualitative analysis drew from 30 in-depth interviews conducted with wildlife trade experts and stakeholders in Viet Nam.

From the interviews, the researchers mapped the trade chain from source (either from the wild or from captive farming facilities) to consumer. Sections of the trade chain are

works.

mapped alongside the relevant government authorities that have jurisdictional oversight at each stage in the trade chain, as well as the relative risks of potential zoonotic disease transmission at each point in the chain. This understanding allowed the researchers to assess opportunities for targeted interventions to reduce zoonotic disease risks along the trade chain. The initial analysis and findings are now being validated by the same group of experts. Once the research is finalised, it will serve as a foundation for designing projects to improve the safety and sustainability of legal wildlife trade in Viet Nam and will provide a model for similar trade chain mapping and interventions in other countries where TRAFFIC

FIGURE 4

Map of Viet Nam's wild animal trade chain for meat and medicinal uses. Includes notes on the government authorities responsible at each stage in the trade and qualitative estimates of the relative risk of zoonotic disease transmission from a wild animal to a human at each stage. Following this expert elicitation, risk pathways would need to be further evaluated based on types of species in trade, magnitude of trade, human behaviours and practices, hazard identification and zoonotic disease surveillance, and other contextual factors at different points in the trade chain. Source: TRAFFIC and Prophet, based on expert interview responses

\star Transport

REGULATORY CONTEXTS FOR TRACEABILITY

As illustrated by the Viet Nam wild animal trade chain mapping, understanding the structure and steps in the chain for animals and products from consumer to source is an essential step in evaluating and managing the risks of that chain²⁸. This next section assesses the different regulatory contexts in which traceability may operate.

Mandatory traceability systems are

implemented by governments, such as requiring permits to export products of a particular species. Voluntary traceability systems are often implemented by private sector actors to ensure product quality, align with companies' values, and capitalise on business incentives for product traceability²⁹.

Traceability systems operate within two primary contexts: mandatory and voluntary.

REGULATIONS AT THE NATIONAL LEVEL

Traceability is an important tool for monitoring risks across different wild animal trade types, whether for food, medicine, pets, display, or research. Existing traceability practices for domesticated livestock make food traceability a helpful starting point to understand regulatory contexts. The responsibility for implementing and monitoring food traceability requirements may be carried out by national governments, local governments, or industry associations. National systems for mandatory livestock identification and traceability proliferated in the late 1990s and early 2000s in response to the spread of bovine spongiform encephalopathy, or 'mad cow disease^{'30}. Where industry-led programmes are prevalent, these typically precede the establishment of government-led traceability systems. Food traceability systems are less common in developing countries where food security remains an issue; access to sufficient quantities of food is prioritised over concerns for the food's quality³¹.

In comparing those countries that are furthest along in the development of food traceability systems, several notable features emerge.

Historically, Canada and the United States have had less government-led traceability and more reliance on voluntary industry-led traceability. China has rapidly accelerated its government-led traceability requirements over the past decade but still lags behind European countries³². The European Union (EU) countries stand out as having the world's strongest and most transparent food safety and traceability practices, both for domestic products and imports³³. EU legislation requires that all food and feed products be traceable; importers must be able to identify the exporting entity in the product's country of origin, and businesses must be able to locate both one step back along the supply chain (towards the source) and one step forward (towards the final consumer)³⁴.

Beyond the EU, national food traceability requirements tend to be limited to specific commodities. Japan and Norway, for example, require tracing for animals and animal products, but few other foods and commodities have mandatory traceability³⁵. Globally, traceability requirements for livestock are much more evolved than traceability for

wild-harvested seafood, particularly seafood sourced from developing countries. Thus far, there are fewer examples of traceability for terrestrial wild animal products, hence the

potential to carry over systems developed for livestock. For instance, in 2013 New Zealand extended its cattle identification and traceability requirements to deer

REGULATIONS AT THE INTERNATIONAL I FVFI

The Parties to the Convention on International Trade in Endangered Species (CITES) have assessed the context in which traceability should be considered as a tool for greater monitoring of a supply chain and have offered guidance to Parties in the use of traceability systems³⁷. A review³⁸ that assessed the complexity of CITES-listed species in international supply chains and the technical difficulties in dealing with wild animal products across taxonomic groups concluded traceability needed to be crafted to the needs of each particular supply chain.

The CPTPP chapter on Sanitary and Phytosanitary Measures offers regulatory guidance for international supply chains. For international trade, sanitary measures must be equivalent between exporting and importing countries. Each country should conduct a risk assessment based on scientific data, using both quantitative and qualitative information. This risk analysis should be documented for public review and comments by other

interested countries. Proposed sanitary measures and their legal basis should also be publicly available and open for public comment ^{39.}

Under the CPTPP, importing countries can audit exporting countries' authorities and inspection systems and conduct on-site inspections of facilities if appropriate. In the case of an audit, the auditing party should allow the audited party to review and comment on the findings before taking action. Exporting countries must notify importing countries in the following situations:

- exported good

- A significant sanitary risk related to an
- Urgent national changes in animal health that may affect trade
- Substantial changes in the status of a regional pest or disease
- New scientific findings that would affect the regulatory response
- Significant changes in food safety or
- disease management/control/eradication
- policies that affect trade⁴⁰

VOLUNTARY SYSTEMS

Voluntary traceability systems are often implemented by the private sector to enhance and standardise companies' own sourcing and production practices and market these good practices to consumers. Examples for wildsourced animals and plants include the Marine Stewardship Council (MSC) and FairWild. These two systems, MSC for seafood and FairWild for plants, have the potential to be adapted to trade in wild terrestrial mammals and birds but are not currently used as such, hence both are explored further in Annex I. Governments can also play an important role

in voluntary traceability systems, as shown via organic farming standards. Organic standards were initially developed by the private sector, but some were later regulated by governments to help improve their reach and public credibility, as is the case in the European Union and the United States⁴¹. A potential disadvantage of government involvement in voluntary standards is that the standards need to be agreed upon by a more diverse set of stakeholders and become more challenging to revise42.

TRACEABILITY **MECHANISMS TO** CONSIDER FOR TRADF CHAINS IN WILD MAMMALS AND BIRDS

This next section moves from the potential regulatory contexts for traceability to assessing specific methods and tools that could be adapted for use in different wild animal trade systems. The Hazard Analysis and Critical Control Points (HACCP) system was studied for its role in mitigating health risks in food supply chains. The use of

blockchain technology was considered for its potential to ensure that supply chain data is both accessible and free from unauthorised modifications. Mobile applications for capturing supply chain data were likewise reviewed for accessibility, practicality, and potential affordability.

ASSESSING AND ADDRESSING SYSTEMIC RISKS: HACCP

HACCP is a leading international set of principles for assessing and mitigating the health safety issues of a particular product and its supply chain. HACCP focuses on

prevention along the supply chain from primary production to final consumption⁴³. The system considers hazards as pathogens or chemicals with the potential to cause harm

to human health, and risks as the likelihood and severity of health effects these hazards could cause⁴⁴. Animal health, both in testing animals and animal products for pathogens, is also an important component of HACCP⁴⁵. Hazards, risks, processes, and actors along the supply chain are analysed to identify and manage the critical control points for ensuring product safety. Developed in the 1960s, HACCP is widely used for food production and other industries where health safety is critical, such as pharmaceuticals and cosmetics. It is endorsed by FAO, WHO, and national government authorities such as the United States Food and Drug Administration⁴⁶.

HACCP has been broadly applied to international livestock trade, and its principles could be similarly applied to improve the management of wild animal trade⁴⁷. The nature of HACCP enables evidence-based, context-specific solutions for disease risk reduction. For example, when used to control foot and mouth disease in cattle, HACCP has empowered local stakeholders to engage in risk management while preserving their livelihoods⁴⁸. It is important to note that HACCP focuses on reducing risks from known hazards rather than reducing risks from unknown novel pathogens. Using the Critical Control Point approach to identify potential risk points and

prioritise appropriate mitigation measures would provide a practical foundation; however, adaptations would be needed to account for the variations between different wild animal trade contexts.

supply chain include49:

end consumer needed **Critical Control Point** keeping.

- Basic steps for application of HACCP in a
- 1. Describe the product: its composition, any treatments, its durability, storage conditions,
- **2.** Identify the product's intended use by the
- **3.** Map the supply chain, from primary production to end-use, and cross-check this mapping with experts and stakeholders **4.** List all potential hazards along the supply chain and consider what control measures are
- 5. Determine the Critical Control Points 6. Set a quantifiable limit for compliance at each Critical Control Point that allows time for corrective action before the limit is breached 7. Establish a monitoring system for each
- 8. Establish corrective actions
- 9. Establish verification procedures to ensure
- that the HACCP system is working effectively,
- such as product testing or internal audits
- 10. Establish documentation and record-

IMPROVING DATA INTEGRITY: BLOCKCHAIN

Once a set of principles for disease risk monitoring and management is in place, an important next step is to ensure that the data gathered remains both accurate and accessible across the supply chain. Blockchain technology is an increasingly popular tool to secure and disseminate supply chain traceability data.

Blockchain is a distributed digital ledger that can store data of any kind. Its best-known use is for cryptocurrencies like Bitcoin, but it has a range of other applications, including monitoring supply chains. Using blockchain technology can help to improve the transparency and traceability of supply chain data and make the data difficult to tamper with because the database itself is fully decentralised. Whereas traditional databases may rely on one location and administrator, identical copies of a blockchain database are stored on multiple computers across a network. Before any new information can be added to the database, a majority of computers throughout the network must verify the data's legitimacy⁵⁰. This verification can help to flag incorrect information to enable prompt investigation of any fraudulent activity that might pose risks to the supply chain's safety, sustainability, and legality.

Blockchain technology

is an increasingly popular tool to secure and disseminate supply chain traceability data.

FIGURE 5

Numerous forms of data can be shared via traceability. Source: Alistair Douglas

Traceability = Rails for Data

Connecting the supply chain through traceability enables a great deal of data to be added and shared amongst a variety of stakeholders to improve performance, profitability, sustainability and responsibility.

CASE STUDY – THE FISHCOIN PROJECT⁵¹

Building on the mFish initiative of the US State Department, mFish-Trace is a multilingual blockchain-based traceability system that rewards fishers for inputting data with Fishcoin tokens. These tokens can then be redeemed for mobile top-ups; other goods and services may be added as token redemption options in the future. The Fishcoin system shows that blockchain technology does not need to be expensive or consume substantial electricity, as with Bitcoin. The base system uses the Stellar⁵² blockchain, which costs a fraction of a cent per transaction, and the Trace Protocol behind Fishcoin is blockchain system agnostic. The Fishcoin Project developers simplified the application's coding to allow it to operate on a 2G cellular network⁵³.

The business model for traceability is sometimes lacking, as it is often unclear which

Although blockchain can facilitate tracing a supply chain, enabling faster and more reliable data sharing, it is not a one-size-fits-all solution. More important to traceability than implementing advanced technology is to close information gaps in the supply chain through

improved management practices and closer

actors in the trade should pay for the costs of data collection and storage and who should own the data. When the Fishcoin Project developers first released their mFish.co⁵⁴ traceability application, there was no incentive for fishers to share their data despite the App being free to use. Tokens now reward the fishers for their data, and the fishers choose how the data is shared. A project led by Herriot-Watt University is exploring how sensors on fishing nets can further support the cost of traceability. These sensors enable precision fishing while simultaneously gathering data for climate change research. Fishcoin tokens pay for this technology, so consumers who are willing to pay a premium for climate-smart seafood support the cost, and it does not fall solely on fishers⁵⁵.

GUIDING CONSUMERS: STANDARDS FOR TRACEABILITY

To improve and standardise product traceability and market this traceability to consumers, certification schemes like the Forest Stewardship Council (FSC) and Fair Trade have proliferated in recent decades⁵⁷. Their easily recognisable, widespread labels can be a valuable guide to conscientious consumers searching for products with added value for sustainable sourcing, workers' rights, and other production concerns.

Large-scale certifications, however, tend to favour big producers. For certifications that

rely on third-party auditing to verify the supply chain data collected, audits can be prohibitively expensive without a critical mass of sales. Such voluntary standards have thus far faced barriers to adoption in developing countries, particularly for small-scale producers⁵⁸ ⁵⁹. Recognising these challenges, standards such as MSC and FairWild (both covered in more detail in Annex I) have introduced programmes for producers to gradually progress towards certification over their first several years of engagement.

racingcollaboration among actors along the chain.moreTo effectively trace the whole supply chain,size-fits-allactors should first share information using thesame data model56. This initial commitmentto collaboration, if successful, can serve as anthroughentry point to the adoption of blockchain.

INCREASING ACCESSIBILITY FOR STAKEHOLDERS: TRACEABILITY APPS

As mobile phones have become common even in developing regions, mobile applications present an accessible, low-cost option for small-scale producers to capture their supply chain data and share this with merchants and consumers without the expense of certification. This can enable a more direct, personal connection between the consumer, the product, and the producer, and is customisable to recognise the unique efforts of the producer beyond compliance with a single set of standards. This customisation allows high-achieving, small-scale producers to market their goods at a premium and recover the costs of their extra efforts, and allows consumers to choose the product that best matches their needs and values⁶⁰ ⁶¹.

SHARKTRACE

SharkTrace⁶² is a mobile App-based traceability tool that tags and tracks shark and ray products from capture through to consumption. It aims to enable governments and traders to verify that shark and ray Third-party certifications are still an important goal for producers and other stakeholders in trade to work towards, as these systems strengthen quality control and enable objective, independent evaluations of trade practices. Using a traceability App can be a helpful first step toward engaging with the more rigorous production and data management requirements of certification.

An example of a mobile traceability App for wild-harvested sharks is SharkTrace. It is worth noting that this kind of App can easily be adapted to different supply chains and product types, including terrestrial wild animal species, by changing the data elements collected; the App is simply a tool for collecting data.

products are from legal, sustainable sources and help regulators, including those implementing CITES, exclude products not meeting these criteria. SharkTrace consists of three unique Apps to enable traceability across the three main phases in the supply chain:

1. A vessel-based application for tracking sharks from the point of catch to landing at the wharf

2. A factory application for the main processing stage, and

3. A transport application that covers the packaging and distribution stages.

FIGURE 6

The Key Data Elements (KDE) used in SharkTrace for each of the four Critical Tracking Events (CTE) throughout a shark product's journey. Source: TRAFFIC (see link in footnote)

range.

CATCHING •

• OFFLOADING •-

UI Vessel Time/date Location Gear/methods Species name UI Input batch Product Type UI Supplier Time/Date Quantity/weight

For ease and reliability of data gathering, the SharkTrace system can produce tags for carcasses or more highly processed products with both a radio-frequency identification (RFID) tag and a visible tag. This combination of visible and invisible tags prevents the easy duplication of a single physical tag. A cloudbased application aggregates the data from the three different supply chain Apps each time a quick response (QR) code or barcode is scanned. Different permission levels for different users help prevent data tampering, and any differences in the data from one stage to another will alert the administrator with a red flag.

Several practical lessons gathered so far from the development and implementation of the SharkTrace traceability Apps are:

- The application and the technology and equipment it requires must be costeffective to facilitate uptake;
- Any equipment needed (phones, tablets,

and suited to will be used; Tags should and attachab

In developing SharkTrace, the harvesting and processing practices were examined to determine a) Which parts of the supply chain would best accommodate the capture of critical information, such as species, catch location, catching method, etc., and b) What were the most appropriate terms to be loaded into the Apps to allow users to select from dropdown menus. Such user options include viewing the App in the local language and selecting the different common names for species and the form of processed product. The Apps could be adapted to any type of supply chain across different taxa and could be adjusted for use in any language, enabling broad application beyond shark and ray products and extending to terrestrial species.

The Apps are designed to work on the simplest and least expensive smartphones available. They can operate without cell phone reception to make them usable at sea, and the data will automatically sync once back in reception

TRANSPORTING

UI Output batch Weight of output batch UI Customer UI Logistic Unit Time/Date

tag readers/scanners) should be durable and suited to the environment in which it will be used;

Tags should be cheap, reliable, single-use, and attachable to the carcass or product.

> SPLITTING/ Processing/ Mixing

Process Type Individual units UI Batch UI Weight of batch

CASE STUDIES: WILD ANIMAL SUPPLY CHAINS MANAGING FOR DISEASE RISKS

The potential for extending the use of wellestablished systems used globally to ensure food safety, such as HACCP, to wild animal trade has been proposed as providing a way for some trade in wild animals to continue in a manner that addresses health risks to humans⁶³. A first step to further the potential application and adoption of HACCP and similar approaches to disease risk management is to document and extract insight on how such frameworks could be used in the wild animal trade. Understanding the supply chain geography, including actors along the supply chain, the accompanying legislation, and the role of different government agencies and private sector participants will help define the potential for their practical application.

To examine the potential for using the HACCP approach to address disease risk imperatives associated with trade in wild animals, the following three case studies were selected to investigate established wildlife meat production systems in different contexts:

- the well-developed kangaroo industry in Australia
- the avian influenza-adapted ostrich . industry in South Africa, and
- the long-standing hunting, consumption . and trade of venison in France.

Australia's kangaroo industry relies entirely on wild harvest, whereas South Africa's ostrich industry relies on closed-cycle captive breeding without introducing wild stock, and France's venison trade includes both wild harvest and some captive production. It is worth noting that these three case study examples are all relatively industrialised and operate in country contexts with well-developed animal health sectors. These countries also have

well-developed biosecurity regulations for livestock production, which may serve as an important basis for regulating biosecurity in wild animal trade. In contrast, much of the global trade in wild animals involves countries with limited resources for animal health and comparatively less regulation for biosecurity in animal production. These case studies help assess good practices to work towards (albeit still with room for improvement), but their lessons will require adaptation to the contexts of countries with less developed biosecurity regulations. The broadly applicable lesson that these case studies illustrate is the importance of establishing critical control points to monitor and manage risks along the supply chain; this step is essential to enabling safe and sustainable legal wild animal trade to occur.

The objectives of each case study were to describe:

- The overall structure of the supply chain for the species and traded commodities
- he key actors and stakeholders along the supply chain
- . The Critical Control Points along the supply chain and the associated responsibilities of government authorities and other actors, and
- The legislation and government departments responsible for implementation.

Considerable detail was collected on each case study, including lists of relevant laws, practices, and guidelines. What follows are the key points related to this Review's focus on supply chain management and traceability for improved safety and sustainability of legal wild animal trade, with particular attention to health and safety.

FIGURE 7

From left to right, an eastern grey kangaroo, a South African ostrich farm, and a red deer

AUSTRALIA'S KANGAROO MEAT INDUSTRY

CONTEXT OF AUSTRALIA'S KANGAROO MEAT TRADE

The Australian kangaroo meat industry is characterised by the harvest of four key species: red kangaroo (Macropus rufus), western grey kangaroo (Macropus fuliginosus), eastern grey kangaroo (Macropus giganteus), and common wallaroo (Macropus robustus). There are currently four abattoirs operating as export establishments and the industry currently has market access to approximately 60 overseas markets⁶⁴. This case study details some of the health safety concerns for the kangaroo meat industry, namely Salmonella, Escherichia coli and Toxoplasma gondii, and the key control points regulated in HACCP systems across the industry.

There is a long history of consumption of kangaroo meat by Aboriginal Australians dating back 40,000 years⁶⁵. In 1788, British

colonisation began on the continent, and colonists also began hunting and consuming kangaroos⁶⁶. Concerns about kangaroo meat consumption emerged in the 1860s when kangaroo meat came to be considered high in worm infestations and was banned under the health act⁶⁷. However, concern over worms in kangaroo meat was later determined to be unfounded68.

In the 1950s, the market for kangaroo meat began to re-emerge^{69 70} and in the 1960s, research focused on kangaroo biology and understanding its safety for consumption⁷¹. In the 1970s, kangaroo meat began to be used for domestic pet food. Urbanisation at the time contributed to a growing interest in consuming kangaroo meat and a subsequent interest in farming kangaroos.

Kangaroo farming, however, was deemed unfeasible due to high costs and challenges in husbandry^{72 73 74 75}. In 1988, the first regulations for the harvest of wild kangaroo were released, alongside guidance for kangaroo meat processing. A code of practice for all game meat production (including kangaroos) was also established⁷⁶. From 1990, kangaroo meat sold commercially was required to adhere to these regulations77.

HACCP was first applied to Australia's kangaroo meat industry in 1996, and in 1997 the Commonwealth Scientific and Industrial Research Organisation (CSIRO) released the Australian Standard for Production of Game Meat for Human Consumption⁷⁸. In 2007, the standard was updated to create the Australian Standard for the Hygienic Production of Wild Game Meat for Human Consumption⁷⁹ (which

includes kangaroo). The industry codified its welfare standard in 2008 by releasing the National Code for Humane Shooting of Kangaroos and Wallabies.

The code was revised and approved by the Australian Government in 2020 as the National Code of Practice for the Humane Shooting of Kangaroos and Wallabies for Commercial Purposes⁸⁰. Australia released regulations for game meat export procedures and standards in 2010⁸¹. In early 2021, Australia opened consultation from the industry, stakeholders, and the public for changes in its export regulations. This consultation resulted in revisions in export regulation for game meat released in July 202182. However, standards of meat processing still refer to the 2007 Australian Standard for the Hygienic Production of Wild Game Meat for Human Consumption⁸³.

KANGAROO MEAT TRADE'S HAZARDS AND HISTORY OF DISEASE OUTBREAKS

Scientific evidence has shown that kangaroos are susceptible to some of the same infections from pathogens present in other animals produced for meat, such as cattle and lamb. There have been no recorded zoonotic diseases or food-borne illnesses transmitted to humans from consuming kangaroo meat⁸⁴. There have been rare cases of zoonotic transmission of Q fever (a disease caused by the bacterium Coxiella burnetii), from live kangaroos to humans via exposure to kangaroo faeces, Q fever is common in livestock species but may also infect kangaroos. There have been no cases of Q fever transmission from meat.

Similar to requirements for processing animals such as cattle and sheep, the Australian Government requires regular monitoring for indicators of processing hygiene (aerobic plate count (APC) and generic Escherichia coli) and pathogens (Salmonella)⁸⁵. Observed

Salmonella prevalence on kangaroo carcasses is very low, with only one instance of detection in the 12 months to May 2021⁸⁶. There were claims in 2009 and 2011 that kangaroo meat shipments to the Russian Federation contained Escherichia coli, which led Russia to halt imports⁸⁷. In response to Russia's withdrawal from the export market, Australia conducted training initiatives to improve guality and hygiene standards in the kangaroo meat industry^{88 89}. The latest export regulation revision (Export Control Act 2020) and the Microbiological Manual for Sampling and Testing of Export Meat and Meat Products (2021) also include updated guidelines and methods of testing. Toxoplasma gondii is another contaminant of concern and has also been identified as a food safety risk for domestic red meat and unwashed fruit and vegetables. Testing for T. gondii is not included in guidelines as proper freezing and cooking inactivate the parasite 90 91 92.

STEPS IN THE KANGAROO MEAT SUPPLY CHAIN WITH CORRESPONDING HAZARDS AND CCPS

The kangaroo meat industry is regulated throughout its supply chain by several governing bodies (see Figure 9).

The phases within kangaroo meat harvesting can be grouped into:

A) The pre-harvest phase, which includes: 1) Population management of kangaroo and quota setting

2) Pre-harvest training and certification for humane shooting and proper handling

- B) The harvest phase, which includes:
- 1) Field dressing 2) Transportation
- **3)** Storage in chillers before transportation to processing centres

C) The meat processing phase, which includes:

- 1) Carcass inspection
- 2) Game meat processing
- 3) Game meat packaging

Uses of kangaroo meat are determined based on meat quality and may include human consumption, pet food, and pharmaceutical purposes⁹³. Based on meat establishment certification and destination, the meat is either used for domestic consumption or is exported to countries that accept kangaroo meat and meat products produced at export-registered establishments.

The entire process of the production chain can be found in Figure 8.

A. Pre-Harvest Phase A.1. Kangaroo population monitoring and quota setting

Relevant state governments and the national government's Wildlife Trade Office monitor the 'key species' of kangaroo population for the purpose of commercial harvest, and the population count is used to set annual harvest quotas⁹⁴. The annual quota is dependent on a variety of criteria, including aerial surveys and population management plans, and may vary according to changes in kangaroo populations which may be impacted by events such as droughts, bushfires, or the presence of disease^{95 96}. The occurrence of any such event would halt all harvest activities until the relevant state government deems that field conditions are suitable for harvest to continue⁹⁷. Harvesters must purchase hunting tags, and all sold and unsold tags are recorded. More information on hunting tags can be found in the later sub-section on current traceability measures.

B. Harvest phase

Kangaroo harvesting is typically conducted at night (when kangaroos are more active98 and when air temperatures are cooler) and must adhere to the Australian Standard for the Hygienic Production of Wild Game Meat for Human Consumption⁹⁹. Harvest methods are based on the National Code for Humane Killing of Kangaroos and Wallabies¹⁰⁰. Kangaroos must be head shot with a single shot, and carcasses are then tagged. The carcass is then field dressed, naturally bled, and hung. The skin is left on the carcass to avoid contamination. Post-harvest and field dressing, the carcasses are transported to field chillers, either when the transportation vehicle is full or two hours before sunrise. Carcasses are stored in sub-seven-degree celsius temperatures. These field chillers have temperature loggers installed to ensure that the temperature remains constant. During field harvest, there are no regular third-party inspections. Inspections may occur occasionally but may be opportunistic. Risk in this phase includes potential contamination due to mishandling of the carcass by field harvesters, with harvester certification courses and licenses intended to mitigate these risks. Adherence to field harvest procedures is commonly inferred from the condition of the carcass when arriving at meat processing establishments; an explanation of what is inspected is included in the subsequent section on carcass and meat inspections. During transportation, risk factors include the distance from harvest site to field chillers, from field chillers to meat processing establishments, and variations in temperature during harvest and transportation, which may increase contamination risks. The transport distance from field chillers to meat

A.2. Pre-harvest training and certification

To ensure field harvesters are equipped with the skills for humane harvest, standardised field dressing, and transportation of kangaroos (as well as properly equipped vehicles) to prevent mishandling and contamination, field harvesters are required to be certified through multiple courses. These include courses on humane animal shooting, field dressing, transportation, and storage before sending carcasses to the processors. Field harvesters must maintain a shooting and harvesting license, renewed every five years.

processing establishments can be far, in some cases up to 800 km. Vehicles are required to use mobile chillers for transportation (which also have temperature loggers installed, like field chillers, to monitor and maintain a constant temperature). Each state has its own regulations and protocols to ensure food safety compliance. Following these protocols, field chillers and vehicles require accreditation and are regularly audited by food safety authorities of each state (e.g., Safe Food for Queensland, the Department of Environment, Climate Change and Water for New South Wales and Biosecurity SA for South Australia). The bulk of inspection for carcass contamination is done in the subsequent meat processing phase.

C. Meat processing

Standards of carcass handling at the meat processing stage differ based on the consumer market, but all establishments are required to comply with the Australian Standard for the Hygienic Production of Wild Game Meat for Human Consumption¹⁰¹. In addition to the domestic market, there are four establishments that are registered to process chilled and frozen kangaroo meat for export. Two are located in South Australia, one in New South Wales, and one in Oueensland¹⁰².

Each establishment is required to have a gualified meat safety inspector. For domestic establishments, meat inspectors are either

state officials or employed third parties overseen by the State Represented Authority (SRA) (mostly State food safety departments) and are on-site to examine each carcass before shipment¹⁰³. For exporting establishments, meat inspectors are on-site daily and are overseen by a veterinarian and the Federal Department of Agriculture, Fisheries, and Forestry.

C.1 Carcass and meat inspections

Post-mortem inspection of all carcasses before entering the processing plant occurs daily for all establishments, with a yearly audit of the hygiene of equipment and procedures for all establishments. An annual audit is a minimum requirement; however, audits commonly occur more frequently. For all establishments, meat inspectors are present on-site and perform a pre-inspection (to inspect for any issues that may have affected the animal before harvest) and verification of post-mortem inspection and processor hygiene practices. If an animal was not headshot, it is not eligible for processing¹⁰⁴. Every carcass is inspected and microbial testing is performed to confirm processor hygiene.

Meat inspectors visually check the carcasses to ensure no physical abnormalities. This includes checking for bruises, lesions, and any other visible abnormalities along with inspection to ensure implementation of proper

harvest method and checking for the presence of disease. Some establishments perform additional inspection using an x-ray machine and metal detectors to ensure there is no damage to the carcass or metal residue from improper harvest, transportation or handling. All inspections are done to ensure adherence to the Australian Standard of Game Meat¹⁰⁵. The inspections determine both the quality and the destination of the meat. Decisions are made on whether the carcass and its parts would be suitable for one of the following:

- Passed for human consumption
- Retained for other examinations before final disposition (i.e., temporarily kept aside for further examinations to determine how it should be treated)
- Unfit for human consumption and may be recovered for animal food
- Unfit for human consumption and may be recovered for pharmaceutical material (e.g., pericardium, valves and cartilage of kangaroos are used for some medical applications¹⁰⁶)
- Condemned

For export meat, there are additional categories:

- Passed for human consumption and unsuitable for export
- Passed for human consumption and unsuitable for export to a specified country

Once the meat enters the category for animal food, it then follows the Australian standard for commercial pet food. Carcasses are tested for microbial contaminants based on Australia's export microbial manual for sampling and testing. Establishments are also responsible for the hygienic operations of their facilities, which are verified through assessment against Australian performance standards. Establishments are required to record all meat and hygiene inspection results and input the information into a national database to ensure record management and traceability. Data records are logged online into a Meat Export Data Collection (MEDC) System.

Carcasses are tested for microorganisms based on Australia's export microbial manual for sampling and testing¹⁰⁷. The most commonly observed contaminants include Salmonella, Escherichia coli and APC. Microbial sampling is performed after the kangaroo is dressed (skinned) and before entering the meat processing area of the establishment. The Australian Government specifies carcass sampling frequency and performance criteria for E. coli and Salmonella. If monitoring results exceed performance criteria, the processing establishment must investigate the cause and implement corrective actions to ensure continued detections do not occur. Establishments are regularly audited. If establishments do not pass reaudit requirements, sanctions may include suspension or revocation (partial or full) of their establishment approval.

C.3 Packaging

C.2 Performance of microbial testing

Once kangaroo meat has been fully assessed and deemed suitable for processing, it is packaged and ready for commercial sale. More information on packaging and the data it requires can be found in the following subsection on current traceability measures.

FIGURE 8

Ilustration of the kangaroo meat processing phases with reference to Food standards Australia New Zealand (2013). The labelled hazard points are where hazards have been identified and control points are in place

CURRENT TRACEABILITY MEASURES

The kangaroo meat industry has corresponding legal regulations and traceability requirements for each step in the supply chain, from population identification to harvest, processing, packaging, and sale (CSIRO 2006; CSIRO, 2008; Export Act 2020; AEMIS 2021; Export Control for Wild Game Meat Rules, 2021). These enable the wild game meat, and date of consignment. tracing back to the source of any potential contamination or disease transmission¹⁰⁸.

After harvesting, carcasses are tagged with the following information, at minimum: species harvested, date of harvest, time of harvest, location of harvest, and name of field harvester. This information is crucial for tracing the harvested kangaroo to its source.

Meat packaging requires information on the species harvested, the packing establishment, a refrigeration statement, the product in the package (which specific part or cut of meat is inside the package), a tracing system to identify individual production batch, and all raw

material involved in processing. The tracing system to identify individual production batch enables identification of the field harvester, batch in which the kangaroo was processed, date of processing, total size of batch, name and address of the business that consigned

The current tracing system in kangaroo meat production still relies heavily on paper-based notes and information management by individual processors and businesses. The government regulation requires and audits that all parties have well-maintained logbooks or information management systems, but the industry has no standardised information systems. In 2021 the Australian government issued grants to develop better record keeping and data management systems for the industry. Tracing systems with scannable codes to capture all information from kangaroos' source harvesting to final processing are currently in development¹⁰⁹.

RESPONSIBLE STAKEHOLDERS AND REGULATIONS IN THE KANGAROO MEAT TRADE

Several stakeholders are involved in Australia's kangaroo meat trade. All export-oriented trade is regulated at the national (federal) level by the Department of Agriculture, Fisheries, and Forestry; however, in the field practice can be performed by State Regulatory Authorities

(SRA). For domestic level establishments, production is regulated under State authority, while monitoring for HACCP compliance is regulated and inspected under the food safety authority of each State (Figure 9).

FIGURE 9

Stakeholders involved in the Australian kangaroo meat supply chain. NSW = New South Wales, QLD = Queensland, SA = South Australia, WA = Western Australia, EU = European Union, OIC = Office of International Coordination.

*QLD = Dept. od Environment and Heritag Protection, NSW= Office of Environment and Heritage, SA = Dept for Environment and Water, WA = Dept od Biodiversity, Conservation and Attraction

**QLD = Safefood Queensland, NSW = NSW Food Authority, SA = Biosecurity SA Food Safety Program (PIRSA), WA = Department of Biodiversity, Conservation and Attractions

LESSONS FROM THE KANGAROO MEAT INDUSTRY AND INSIGHTS TO OPTIMISE THE SUPPLY CHAIN FOR A SAFE, SUSTAINABLE, AND LEGAL SUPPLY

Regulations for Australia's kangaroo meat industry (and its wild meat industry more broadly) are continuously updated, and inspections and audits are regularly performed to monitor product quality and hygiene. If standards are not met, sanctions are applied to the relevant stakeholders. Although the industry relies on wild harvesting of animals, from the processing stage onward, the steps and standards are equivalent to those used for meat from domestic livestock. The industry has been approved for import into the EU, known for its high meat quality standards¹¹⁰

¹¹¹. The industry has responded to issues by providing training initiatives and revising regulations (which included public, industry and stakeholder consultations) to improve management. The industry continues to evolve by implementing advanced measures such as the use of x-ray machines, chiller data loggers, and developing a digital meat tracing system.

There remain several areas for improvement for the kangaroo meat industry to address. Domestic markets rely on State authorities to regulate practice, with differing regulations and standards among States (though equivalent outcomes need to be met under the national Food Standards Code¹¹²). Oversight of field harvest practice is limited, as is data for these audits and inspections. Audits, if present,

The main barriers to adapting Australia's kangaroo meat industry HACCP standards in other parts of the world are a) the resources required to implement such rigorous systems and b) variation of food safety standards among nations. A stricter standard implies increased costs of implementation, which in turn may create cost barriers to participation. More research should be conducted to assess which Critical Control Points in the kangaroo industry can be adapted to other regions, particularly field harvesting and meat processing points to minimise the risk of contamination.

are mostly done near chillers and not in the field¹¹³. The kangaroo industry is also under constant scrutiny due to harvesting one of Australia's most iconic animals¹¹⁴. Although the commercial industry is highly regulated, monitored, and has high food safety and animal welfare standards¹¹⁵¹¹⁶, there still remain challenges to communicate this to the public. The kangaroo industry may provide a useful benchmark for pilot projects to adapt HACCP practices for wild meat disease risk management in other countries.

SOUTH AFRICA'S OSTRICH MEAT INDUSTRY

CONTEXT OF SOUTH AFRICA'S OSTRICH MEAT TRADE

This case study details the biggest challenge to ostrich producers and importers of ostrich meat: avian influenza (AI). Evolving knowledge and regulatory adaptation have culminated in a situation in which ostrich farmers now work with authorities to quarantine, rather than cull. farms infected with outbreaks of AI. reduce the spread of AI from natural reservoirs (waterfowl) on their properties, and subject birds to intensive pre-movement and preslaughter testing for the disease.

South Africa's ostrich industry is represented mainly by the South African black-necked ostrich (Struthio camelus var. domesticus), which is a crossbreed between a wild Barbary ostrich (Struthio camelus camelus) and a Southern ostrich (Struthio camelus australis). Farmers have been engaged in ostrich farming, producing meat, feathers, leather, and skins in South Africa since 1820. In 2019 South Africa held more than 60% of the global ostrich meat supply¹¹⁷, but due to socio-economic factors (e.g., the global financial crisis) and outbreaks of AI, the number of ostrich farms in South Africa has been decreasing since 2004, when there were some 740 ostrich farms in the country¹¹⁸. In 2017 South Africa had an

estimated 588 registered ostrich export farms, which supplied five European Union-approved export abattoirs¹¹⁹.

Approximately 160,000 birds are slaughtered annually nationwide¹²⁰. Each slaughtered ostrich produces roughly 15-17 kilograms of prime meat cuts, and approximately 80% of all meat produced is exported to the European Union (mainly the Netherlands, France, Germany, and Belgium)¹²¹.

The South African ostrich industry is overwhelmingly governed towards an export market, not only in the export of meat products but also feathers, leather, and associated products. The industry has produced more ostrich meat for export than for the domestic market every year since 2006, making it self-sufficient and export-oriented¹²². For this reason, this report focuses on the export market component (primarily of meat) and the associated legislative controls governing its production in South Africa.

OSTRICH SUPPLY CHAIN'S HAZARDS AND HISTORY OF DISEASE OUTBREAKS

The main diseases that have affected the ostrich industry have been AI, belonging to both low-pathogenic (LPAI) and highly pathogenic (HPAI) subtypes, as well as Newcastle disease (an avian paramyxovirus) and the viral Crimean-Congo haemorrhagic fever¹²³,¹²⁴,¹²⁵,¹²⁶. This case study focuses on AI, as ostriches in South African captive production systems are vaccinated against Newcastle disease, and the incidence of Crimean-Congo haemorrhagic fever in flocks is rare.

Although transmission of AI from ostriches to humans has not been detected, the risk

of severe disease in humans due to AI is considered significant enough to be of concern¹²⁷. Globally, there were 863 confirmed cases of AI in humans between January 2003 and February 2022. More than half of those cases in humans were fatal¹²⁸. The European Centre for Disease Prevention and Control considers AI strains to be of concern due to their ability to generate mutations within the genome that enable mammal adaptation, or through reassortment, the exchange of genome segments between different viral subtypes from different species. These characteristics could lead to new AI strains

transmissible to and among humans¹²⁹. Specifically, there is increased zoonotic potential of AI following replication in ostriches due to the ability of the virus to select for mammalian-adapted PB2 mutations when it replicates in ostriches¹³⁰,¹³¹. The South African ostrich industry has experienced several AI outbreaks since 2004. Most notable were the H5N2 HPAI outbreaks of 2004, which were the most devastating as the industry in the Eastern

STEPS IN THE OSTRICH MEAT SUPPLY CHAIN WITH CORRESPONDING HAZARDS AND CCPS

Expert elicitation (n=5 industry experts) and a review of the literature revealed that the Critical Control Points (Figure 10) for AI in the ostrich production chain are located at three key points in the lifetime of an ostrich:

1.The potential movement of young birds from hatcheries to a rearing farm (location A, with the associated movement event); 2. The rearing farm itself (locations B1 and B2), where birds between one day old and 12-14 months of age are roaming over larger land areas. This is the point in the supply chain where ostriches may come into contact with wild birds, usually waterfowl like ducks and geese, as well as ibis species^{137,138}. The interaction between wild birds and ostriches at this point makes it the riskiest time in the ostriches' lives for Al transmission¹³⁹, as these wild birds are an Al reservoir and may pass the pathogen to ostriches 140 141;

3.The final point in the production chain, although less likely to create an issue, is when ostriches are moved from rearing farms to the slaughterhouse (locations C and D¹⁴²). The primary reason for the lower risk at point location A (breeding farm, commonly referred to as a hatchery) is that the rearing of young birds from one day old to three months of age is very intensive. There is a high density of farmworkers moving inside chick houses, and these houses themselves are intensive (higher density of birds over a smaller surface area). The same is true for rearing farms with younger birds (Figure 10, B1). This movement of humans around the young birds scares away wild birds, and there

All industry experts in the elicitation process, as well as key literature, suggested that point B2 (Figure 10) is the most critical point where disease spread is likely to be highest. This is owed to less human interaction, and waterfowl can approach water and feed troughs without fear of disturbance, potentially accessing and contaminating both the ostriches' water and food. Coprophagia (the act of an animal consuming faecal matter) is also a problem as ostriches sometimes ingest waterfowl faeces¹⁴⁴¹⁴⁵. The movement of ostriches between farms may decrease the resilience of the ostrich industry to AI outbreaks¹⁴⁶. Bird movements between farms aggravate transmission potential and increase the potential that an infected bird arrives on another farm before detection of AI (lessons learned from the 2011 H5N2 outbreak). At locations C and D (Figure 10), the risk is arguably at its lowest point for four main reasons: 1.Ostriches are tested for AI using a blood test

2.They are quarantined for at least 14 days before moving to the slaughterhouse **3.**Once at the slaughterhouse, they are subjected to both ante and post-mortem examinations by local veterinarians¹⁴⁷, and **4.**Heat treatment of meat further reduces any minimal chance of AI being present inside the meat and jumping to a human host¹⁴⁸,¹⁴⁹.

Cape was decimated when disease control measures at the time destroyed 10.000 birds. This was followed by another outbreak in 2006; a large H5N2 HPAI outbreak in 2011, which affected 42 farms; H5N2 HPAI and H7N1 LPAI in 2012; H7N7 LPAI in 2013; H5N2 LPAI in 2014; and H5N8 HPAI in 2017¹³², ¹³⁴, ¹³⁴, ¹³⁵. The H5 and H7 strains are the most important potential zoonotic strains based on global case numbers and case fatality rates in humans¹³⁶.

are minimal opportunities for waterfowl to approach water and feed troughs which represent potential disease reservoirs in the transmission chain¹⁴³.

FIGURE 10

The mitigation measures currently being taken at the critical control points along South Africa's ostrich production chain (coloured yellow). These are implemented by both farmers and government authorities. Note that these are precautionary measures – there are a series of strict veterinary controls taken if a bird tests positive for AI (highlighted in the critical legislation section in Annex I). The most critical control point is at location B2. These birds are the most susceptible to contact with wild birds, which act as AI reservoirs. Each movement of birds between locations also represents a hazard point for transmission, as this is where birds experience the highest levels of stress (not only because of a change in environmental conditions but also potential changes in feed). Testing before slaughter and heat treatment of meat are the most important late-stage mitigation measures along the ostrich production chain in South Africa. CCP refers to critical control point.

Mitigating Measures to Stem the Outbreak of Avian Influenza at Critical Control Points Along the Ostrich Production Chain

Source: Personal Communication with Dr Adriaan Olivier, Joey Potgieter, Peter Coetzee and Anel Engelbrecht; Mather and Marshall (2011)

CURRENT TRACEABILITY MEASURES

Each ostrich under four months of age is tagged and vaccinated (for Newcastle disease) before any movement to a raising farm¹⁵⁰ ¹⁵¹. Newcastle disease vaccinations are mandatory, and certifications must accompany birds before their slaughter. The AI status of the farm where birds originated must also be presented when birds are slaughtered.

All birds must be tagged with a unique identification number which allows the ostrich to be traced to the farm of origin. Birds must

come from registered farms. These farms should have been registered for at least six months prior to the slaughtering event, and the birds themselves must have lived on a registered farm for at least three months prior to slaughter. Pre-movement testing is mandatory, as is a permit, and movement can only occur to another registered farm. Slaughtering can only take place from registered farms.

RESPONSIBLE STAKEHOLDERS AND REGULATIONS IN THE OSTRICH MEAT TRADE

The ostrich production industry is heavily regulated by national authorities (the Department of Agriculture, Land Reform and Rural Development (DALRRD)) and regional authorities (one for each of South Africa's nine provinces). These are illustrated in Figure 11, and they work in collaboration with both primary ostrich producers and the associated secondary producers (abattoirs). International import regulators such as the EU also provide a set of guidelines to both producers and these authorities on meat and production standards, which are periodically audited in person, as led by the Directorate-General for Health and Food Safety of the European Commission in 2007¹⁵² and 2016¹⁵³.

In terms of the evolution of ostrich production, governing protocols are issued by South Africa's Department of Agriculture, Forestry and Fisheries. One of South Africa's first pieces of legislation to support HACCPbased management was the 1984 Animal Diseases Act (Act 34 of 1984). This was augmented with production standards and rules in the Veterinary Procedural Notice (VPN) for the ostrich industry (Standard for the Requirements, Registration, Maintenance

FIGURE 11

Key stakeholders and actors in the South African ostrich production market. Source: Adriaan Olivier, pers comm, 2021.

of Registration and Official Control of Ostrich Compartments in South Africa). This document was first drafted in September 2006 and supplemented an existing government gazette, No. R29155 Government Notice No. R.864. The VPN has undergone several revisions, most recently Revision 6.0 in 2012 (see Annex I for more details on this legislation).

Due to a lack of resources at the national/ central and regional laboratories, the African Ostrich Business Chamber (a national representative body for ostrich farmers) has worked to establish a private laboratory, Assure Cloud of the National Occupational Safety Association (NOSA). This lab has become accredited by DALRRD and a national accreditation body as well as the central and regional authorities. It works to provide the most rapid surveillance system for AI nationally. Other professional and scientific organisations such as the WOAH work to provide authorities, producers and importers with scientific guidance and recommendations on food safety (e.g., WOAH designed and recommended heat treatment for poultry industries broadly, not just for ostriches¹⁵⁴).

FRANCE'S VENISON TRADE

CONTEXT OF FRANCE'S VENISON TRADE

The use of wild meat is deeply rooted in France's socio-cultural heritage, and for many centuries wild meat was the main source of protein in France. Today, venison continues to be a popular dish during holidays and special occasions, and is eaten as a luxury item. As many people reconsider their consumption preferences and prioritise local produce and traditional dishes, venison is seen as a healthier, more sustainable and environmentally friendly alternative to conventional meat sources from domestic animals¹⁵⁵.

In this report, the definition of venison covers a range of meat derived from cervids (scientific and French names in parentheses): Red deer (Cervus elaphus, le cerf), European fallow deer (Dama dama, le daim), roe deer (Capreolus capreolus, le chevreuil), and sika deer (Cervus nippon, le cerf sika). Historically, venison was

harvested from the wild by hunting these animals, but with increased demand and changing consumer preferences, the French venison market is beginning to expand its sources to farming and ranching operations. The main products are meat and meat sub-products (terrine, pâtés, saucisson or saucisses). Most venison is used domestically (i.e., by hunters and their immediate circles).

Over the past decade, the demand for venison products has increased in France, though it continues to have a relatively marginal role in overall meat consumption (less than 0.2% in the European Union and less than 6.5% in France)¹⁵⁶. Approximately 90% of all contemporary wild meat in the French market is imported¹⁵⁷. In 2020, France was the sixth most significant global exporter of venison and the seventh most significant global importer¹⁵⁸.

VENISON TRADE'S HAZARDS AND HISTORY OF DISEASE OUTBREAKS

Like any other food system, the venison trade has inherent risks associated with the different processes along the supply chain. The

health risks linked to the venison trade can be classified as physical, chemical, and biological. Humans are exposed, directly or indirectly, to

different hazards throughout the supply chain (i.e., hunting, handling and field inspection, transport, processing, storage, distribution, retail, preparation, and consumption). Several zoonotic diseases have been associated with deer: Q fever, chlamydiosis, leptospirosis, campylobacteriosis, salmonellosis, E. coli, cryptosporidiosis, giardiasis, tuberculosis, brucellosis, chronic wasting disease (although there is no current evidence of zoonotic transmission, it is strongly recommended to avoid consuming meat from diseased animals), deer Parapoxvirus, Echinococcosis, Ehrlichiosis (tick-borne disease), Lyme disease, Sarcoptic mange, Tularemia, Crimean Congo haemorrhagic fever¹⁵⁹,¹⁶⁰,¹⁶¹,¹⁶²,¹⁶³,¹⁶⁴. However, association with these diseases does not necessarily

environment.

STEPS IN THE VENISON SUPPLY CHAIN WITH CORRESPONDING HAZARDS AND CCPS

There are two sources of venison: 1) from breeding (or farming) facilities and 2) wildcaught (hunted). In 2015, France had 400–500 red deer and 600 European fallow deer farms, according to figures from the National Union of Wild Meat Producers (Syndicat national des producteurs de gibier de chasse, SNPGC). Only certified providers who either hold a valid hunting licence or are an official wild animal farming establishment (also known as a primary producer or supplier) can enter the commercial supply chain. The French supply chain (also called a circuit) is classified according to the type of use (e.g., personal or commercial use) and the number of intermediaries between the source and the consumer (i.e., direct or indirect). There are three main classifications according to the general characteristics of the supply chain, see Figure 12:

- Short-direct
- Short-professional
- Long circuit

Each of the circuits goes through different stages before reaching the consumer. The stages are organised as follows: 1.Source (primary producer or supplier):

- a. Hunting
- b. Farmed
- **c.** Import

.

chain are:

mean the individuals or population will carry them. The health risk associated with wild deer is lower than game birds, wild ducks, and lagomorphs (e.g., rabbits and hares)¹⁶⁵, and meat contamination with Salmonella or E. coli, although reported, seems to be rare¹⁶⁶. Current consumer preferences favour more extensive and open models for livestock production. In contrast, the increase in demand for wild meat has led to the intensification of the production model (from a primarily wild-caught harvest to a more intensive farming model)¹⁶⁷. As systems and practices adjust, this will likely modify current disease transmission dynamics, creating new interactions between hosts, pathogens, and the

2. On-site processing 3. Collection hub 4. Processing 5. Wholesale

7. Consumer

6. Retail

The different circumstances in which venison is sourced, used, and sold result in variations in the number and type of critical control points and compulsory procedures involved. The venison products are sourced from farms, wild harvest (hunting), or imports. Animals sourced from farms are processed on-site, followed by an on-site veterinary inspection. Before reaching the consumer or an export distributor, the carcass can then go to a processing facility, such as a certified abattoir, a wholesaler, or retailer. These different Critical Control Points and mandatory procedures along the supply

Pre-harvest stage

Each year, the French Biodiversity Agency, local authorities, and local and national hunting associations develop a hunting plan to allocate the yearly quota of animals harvested in each geographical department¹⁶⁸. Once the allocation is set, individual tags are sent to each hunting association, which then sells the tags to hunters. For example, the cost to hunt a male red deer is $171 \in 169$. These individual tags provide the basis for the traceability system.

Wild-harvest stage

For the short-direct supply chain (i.e., the hunter and their inner circle), only the identification of the animal is mandatory¹⁷⁰. In contrast, post-mortem sanitary inspection and traceability measures are not required, merely recommended, because the product will not enter a commercial supply chain (it is compulsory to produce a specimen form for official records, see link in endnote¹⁷¹ for an example). According to French legislation, the hunter (or primary supplier) is fully responsible for ensuring the product's safety in this case, and civil liability legislation applies. It is estimated that 92% of all venison is consumed domestically by the hunter and their close circle, 5% goes to the food industry, 2% is offered to charity, and 1% is lost for various reasons¹⁷².

Both short (direct and professional) and long circuits begin when a certified person (not necessarily a hunter) conducts the initial sanitary inspection. This inspection assesses the condition of the animal and its organs and provides official documentation for the carcass to enter the commercial supply chain as a product safe for human consumption. The commercial supply chain is called a *short* supply chain when it is limited to 80 km from the hunting location. It also usually involves one certified intermediary (i.e., processing, restaurants, or retailer), and it is limited to the

CURRENT TRACEABILITY MEASURES

A key aspect of the venison trade in France is the importance of the initial sanitary inspection and general traceability practices. The initial sanitary inspection is performed on-site by a certified person. The procedure for the initial inspection of the carcass was co-developed by the French Veterinary Associations and the National Hunting Federation and is performed by veterinarians who have been certified at the geographical department level. The objective is to certify the traceability of the animal and carry out an initial, on-site inspection of the carcass. If the carcass goes into the commercial supply chain, certified veterinarians perform additional inspections before the processing stage. The carcass must have an individual bracelet tag with specific information, including the date, location, type of animal, and estimated age (see Figure 13). These bracelets are assigned to each hunting association according to estimated population numbers defined in the species' hunting plan.

total number of animals hunted during the session (i.e., one day). The long commercial circuit has no distance restriction, is not limited in quantity, and may include multiple intermediaries (Figure 12).

Processing and retail

In the short-direct supply chain, the hunter can perform processing, i.e., skinning and cutting. It is possible to sell products or byproducts to approved retailers or directly to consumers. However, if a sale is involved, then a post-mortem examination of the carcass is mandatory, as is the use of a Wild Meat Support Sheet ¹⁷³ ¹⁷⁴. The Wild Meat Support Sheet gathers information for traceability, and copies of it must be stored for five years by the examiner, hunter, and recipient of the meat. For non-sale use, these measures are recommended but not mandatory.

In the short-professional supply chain and the long circuit, the primary supplier sells the carcass 'in-fur' to an abattoir or certified processing and collection hub to process and transform the carcass into meat cuts and sub-products. For the long circuit, the product will then continue to a second intermediary, either a wholesaler or a secondary processor. Next, the products and sub-products could go to another intermediary (a retailer who sells or transforms) before reaching the final consumer. In addition to the initial sanitary inspection, the long commercial supply chain has additional control points performed by certified veterinarians.

FIGURE 12

A simplified representation of three main venison supply chains: 1) Short-Direct, 2) Short-Professional, and 3) Long circuit. The hazard identification is based on direct and indirect transmission (e.g., fomites, cross-contamination) of biological agents (e.g., viruses, bacteria, and macroparasites). Each stage of the supply chain carries associated health risks that can be lowered by implementing control measures such as the use of protective gear, appropriate use and sanitation of tools and materials, veterinary controls, and others. Cold storage prior to the collection hub is mandatory for the Long circuit, and strongly recommended for the Short-Professional and Short-Direct circuits; beyond this point, cold storage is expected for all circuits. Sources: See endnotes^{175,176,177}.

FIGURE 13

Example of individual tagging bracelet and specimen form to control the number of animals hunted each season (2019-2020 season). Source: Fédération Nationale des Chasseurs, France

RESPONSIBLE STAKEHOLDERS AND REGULATIONS IN THE VENISON TRADE

The venison industry in France involves multiple actors simultaneously managing and supervising different aspects of the industry through multiple levels of governance¹⁷⁸. Figure 14 provides a general representation of the multiple stakeholders and at which governmental level they act (1 through 8, from international to local organisations). Following a top-down approach:

- International organisations (1) like WHO, WOAH, and FAO provide general, nonbinding guidelines
- At the European Union level (2), the commissions and agencies provide overarching regulations that every member state must comply with
- At the national level (3), the ministries and national organisations synthesise, organise, and design laws and regulations that, while aligned with EU Regulations (CE), adapt to the national conditions and requirements;
- At the Department level (4), regulations and laws are implemented by the interconnected actions of multiple private, public, and non-governmental stakeholders (e.g., the conception of hunting plans);
- From 5–8 are the organisations and groups required to supply, transform, and use the venison product.

Multiple regulatory and legislative bodies apply at different levels or practices in the venison supply chain (see Figure 14). The European Commission (EC) regulations provide the general framework for specific legislation at national and subsequently local levels. The EC promotes a unified approach to all EU members and associated states and provides an outline for non-EU countries that wish to trade goods within the EU market. The seemingly complex regulatory system with its multiple legislative levels, diversity of actors, and international coordination, unifies practices across the supply chain, guaranteeing a safe product to consumers and facilitating trade among countries that have adopted these quidelines.

In France, venison has three sources or primary suppliers: imports, farmed, and hunted (wild-harvested) animals. The possession and captive breeding of wild animals is governed by Articles L. 413-2 and L. 413-3 of the Environmental Code and its implementation documents (Ministère de la Transition écologique, 2017). The objective is to complement European and International Legislation (e.g., CITES) to enhance the protection of wild species. Farming (or breeding) establishments (les établissements d'élevage) must comply with the Environmental Code and have the 'Certificate of Capacity' (le Certificat de Capacité) that shows the person responsible for the animals has the necessary competencies to hold that species in captivity. Farmers must also have the 'Operating License' (L'Autorisation d'ouverture de l'établissement). Large game from farms can be sent directly to abattoirs, slaughtered on-site, or introduced into hunting areas (or hunting enclosures, parc de chasse or un enclos cynégétique in French) pending authorisation by the Department's Prefect (Puy-de-Dôme, 2015). Animals from farms must follow the sanitary protocols developed by local authorities (Departmental Directorate for the Protection of Populations (DDPP) and official veterinary services). Additionally, all animals must be individually identified with tags.

EC Regulation No. 853/2004 lays out specific hygiene practices according to the animal category (e.g., livestock, wild meat, fish, honey, eggs, etc.) and requires ante-mortem inspections for all animals to be slaughtered in abattoirs. Once the carcass enters the commercial supply chain, it can only go to certified facilities (i.e., collection, primary and secondary transformation) before going to a wholesaler or retailer. Products cannot be introduced into the commercial market unless they have gone through an official veterinary inspection. All facilities (i.e., collection, transformation, transport, and commerce) must be registered, and a list must be available and updated (Ministère de l'Agriculture et de l'Alimentation, 2021)

FIGURE 12

Key stakeholders in the venison supply chain in France

LESSONS FROM THE VENISON TRADE AND INSIGHTS FOR SAFE, SUSTAINABLE, AND LEGAL SUPPLY CHAINS

The French venison trade provides a good example of how animal products can be coordinated at multiple levels. Multiple stakeholders oversee and participate or collaborate in the French venison trade, from the European level through EC Regulations to national and local legislation. France's hunting associations play a critical role in managing wild deer populations via their model of sustainable use. The legislative framework and specific regulations, although numerous, clearly regulate specific components and practices of the supply chain. European legislation is also used internationally to regulate trade with EU members and as a general framework to define national trade and sanitary systems. The legislation's main objective is to ensure that products are safe for human consumption, but it has been expanded to regulate animal welfare, sustainability, and general environmental responsibility (e.g., waste disposal requirements, antimicrobial use, etc.). The sanitary control points, although minimal, place the responsibility on the primary supplier (the hunter or farmer) who wishes to sell their product via the commercial supply chain. As domestic consumption represents the main use of venison in France, strengthening sanitary requirements or developing effective frequent surveillance strategies should be a priority to minimise the risks of missing important sanitary information¹⁷⁹.

France's venison trade is also a helpful model in the search for context-specific approaches to mitigate disease risks among different forms of wild animal trade. Risk mitigation requirements and options for trade are determined based on the length of the supply chain (determined by the distance from the hunting site) and the chain's complexity (determined by the number of actors and intermediaries involved).

As consumer preferences evolve, production practices tend to change accordingly. A clear example of this effect is the change in wild animal management, which is moving towards more intensive farming models, whereas traditional livestock systems are moving towards more extensive models (e.g., free range chicken). These shifts in production practices will likely modify the current disease dynamics, creating new interfaces for disease transfer among animals and people. One of the leading consumer motivations for using wild meat is that it is 'free-range,' so consumer perceptions may change if systems move towards more intensive production.

50 OPTIONS FOR MANAGING AND TRACING WILD ANIMAL TRADE CHAINS TO REDUCE ZOONOTIC DISEASE RISK

LESSONS FOR IMPROVING SUPPLY CHAIN MANAGEMENT AND TRACEABILITY

Many of the lessons learned from existing supply chain management and traceability examples are not taxa specific and thus

carry value for enhancing the safety and sustainability of other forms of legal wild animal trade.

FOUNDATIONS FOR ENHANCING SUPPLY CHAIN SAFETY

Each wild animal trade system is underpinned by unique socioeconomic, cultural, and political factors. In China, for example, the establishment of wild animal farms was historically encouraged by the government as a means of poverty alleviation and rural development¹⁸⁰. In the Republic of Congo and elsewhere in Central Africa, wild meat consumption is partly driven by its association with traditional culture¹⁸¹. Understanding such factors is essential to making positive participatory change in the system. To encourage stakeholders along the trade chain to shift their practices in a legal, safer, and more sustainable direction requires active consultation to ensure One Health principles (see Nomenclature section for an explanation of One Health) are understood, contextualised,

Changes in wild animal trade systems may pose risks to public health without necessarily carrying conservation risks, the lens through which wild animal trade is more often viewed. South Africa's ostrich industry does not source animals from the wild and would not typically pose risks to ostrich conservation, but the risks of AI within the industry are an important concern for public health. When wild animal trade issues such as this are viewed through a public health lens, this can make the issues more relevant to government authorities and enable broader public resourcing to mitigate risks.

EXERCISING DUE DILIGENCE

Audits can be an important tool for assessing that a traceability system is operating as intended, but they are not a perfect solution. In developing countries and particularly in rural developing areas, there may be limited capacity for conducting regular inspections and audits¹⁸². Virtual audits have become more

common over the course of the COVID-19 pandemic, but there is still a need to invest in local auditors with local expertise. This helps to improve efficiency and lower costs, and local auditors can be better equipped to spot inequalities in the supply chain, such as the exploitation of female workers¹⁸³.

and applied. Incentives for good practices such as disease reporting need to be applied just as consistently as deterrents for illegal practices.

Local inspectors and auditors can also work collaboratively with producers to build trust and gradually improve their production practices over time, recognising that immediate compliance may be impossible where resources are lacking¹⁸⁴. In countries like Tanzania where regulations for legal wild animal trade are newly developed¹⁸⁵, established networks of livestock extension officers, livestock meat inspectors, and health officers¹⁸⁶can help form the foundation of food safety monitoring for legal wild meat trade. Risk assessments and stakeholder engagement can be a better-integrated option for supply chain improvement than audits. Support from civil society and local pressure to improve supply chain standards are likewise important influences for change in supply chain practices¹⁸⁷. This suggests the value of combining efforts to improve supply chain management and traceability with SBC interventions to build demand for legal products that are traceable and more sustainable and safe.

ECONOMIC CONSIDERATIONS FOR TRACEABILITY SYSTEMS

Capturing more detailed information in a traceability system raises the cost and effort of participation. Greater detail is not always necessary; to reduce cost and complexity, a system can trace groups of products or animals rather than individuals¹⁸⁸. Costs of participation will need to be fairly distributed along the supply chain to ensure that all actors are involved equally. Smallscale producers can play a major role in the introduction, spread, and control of diseases, but these producers often do not participate in traceability programmes because, at their small scale, they are less affected by the economic incentives for compliance. Legal measures can help to deter such free riders, and an insurance scheme can help to account for the risky or fraudulent behaviours of certain actors along the chain¹⁸⁹. For improved supply chain management and traceability measures to be economically viable, the costs of these measures will need to be internalised from the beginning. National public health systems are generally better developed and resourced than corresponding animal health systems. A One Health approach that involves public health authorities in these wild animal

supply chain reforms can enable significantly greater resourcing for disease surveillance. Identifying links between animal diseases and human disease outbreaks creates greater relevance for animal health and moves limited government resources closer to the source of disease emergence and prevention.

In the event of a disease outbreak or other restrictions through which the government requires farmers to cull their animals, pay-outs must be fair and timely to incentivise reporting of any diseased animals. In Viet Nam's 2019 African Swine Fever outbreak, farmers were paid out at 80% of the market price for culling their pigs, but some farmers sold off their infected pigs rather than reporting to authorities¹⁹⁰.

Small-scale farmers have limited capacity for biosecurity measures compared to big farms, but big farms can have higher chances of infection. One solution to this issue relies on a less intense production model, which will require a broader reduction in consumption and demand for animal products¹⁹¹.

BENEFITS OF PARTICIPATION IN TRACEABILITY SYSTEMS

Requirements for improved supply chain management and traceability need to be kept in proportion with the benefits that supply chain actors perceive they will gain by operating within the legal, traceable framework; otherwise, these requirements will not incentivise compliance. Several benefits that could serve as incentives include:

- a) Meeting legal requirements;
- **b)** Saving money by improving efficiency;
- **c)** Better collaboration along the supply chain;
- d) Improved reputation and consumer trust;
- e) Greater market access¹⁹².

DEFINING 'SAFE' AND 'SUSTAINABLE'

traceability.

'Safe' and 'sustainable' are both subjective criteria that societies and governments will need to define (and occasionally redefine) for themselves. Every system will have some residual level of risk, so the key is to establish what measures are needed to mitigate these risks to an acceptable level. Driving a car, for example, can be a very unsafe activity, but people accept the risks daily while focusing on risk mitigation efforts such as seat belts, airbags, and traffic laws.

As new wild animal trade situations emerge, real-time surveillance of wild animal and domestic animal health and pathogen emergence will be needed, led by appropriate levels of government, to enable regulations and restrictions to evolve accordingly. Not all countries have the necessary surveillance capacity for this, hence the importance of combining resources across public and animal health sectors and international collaboration on One Health. Emerging novel pathogens pose a greater risk for spread and pandemics than routine zoonoses that we have learned how to treat and should be prioritised for monitoring¹⁹⁷.

The disease risks of wild animal trade cannot be disassociated from livestock production risks; the two systems must be considered in tandem with regular assessment of their overlapping disease transmission roles. The intensification of industrial livestock production comes with significant disease risks, but societies have thus far chosen to accept and treat these risks, as with Salmonella in poultry¹⁹⁸. For targeting zoonotic disease risks, in the food sector, the primary focus should be on farms and points of intensifying production (in both developed and developing countries, for both livestock and wild animals) and species mixing, rather than on local small-scale subsistence use at the community level.

Research has found that consumers may be willing to pay two to 10% more for products from companies that provide greater supply chain transparency¹⁹³. Food safety is a major concern for developing markets like Viet Nam¹⁹⁴ and China¹⁹⁵, and research has found that most Chinese consumers are willing to pay a premium for products with better food safety along the supply chain¹⁹⁶. Gaining access to international markets with stricter product standards, such as the EU, can also provide a business incentive for implementing

GAPS AND OPPORTUNITIES GAPS

In assessing the findings of this Review, several gaps in knowledge emerge that will require further investigation.

As noted in the Methodology and Limitations section, additional research is needed to explore how supply chain management and traceability interventions can help to improve the sustainability of wild animal trade systems and prevent illegal practices. More research is also needed to assess how improved supply chain management and traceability can be applied to trade in live wild animals kept as pets and used for scientific research or for display, and trade in wild animal-derived medicines.

To adopt or adapt best practices in supply chain management and traceability to new contexts, particularly in developing countries and less regulated trade chains, additional research will need to assess the costs of these practices and how these costs can best be distributed across the system. Funding needs and mechanisms will vary based on each context and supply chain. The funding needed for applying best practices will partially depend on the country's existing infrastructure for veterinary services, disease surveillance, and livestock regulations. Can the country expand such existing systems to wild animal trade, or are these systems already stretched thin? These infrastructural costs involve long-term development and are therefore difficult to quantify and compare between nations. In addition to the costs of improved supply chain management and traceability practices, what adaptations to these practices may be needed to accommodate for national differences in governance, legal compliance, and corruption risks?

In revisiting the three principal case studies for this Review, TRAFFIC asked who pays for these systems' controls and traceability measures? How have the costs been integrated into the systems to avoid overburdening any set of actors along the trade?

Looking deeper at the regulatory environments for each case study system, are these regulations and practices government-derived, or have businesses and stakeholders designed them? If the latter, are there any pro-industry biases? Are the requirements in these systems strictly implemented in practice or just on paper? Do stakeholders seek to avoid the requirements, how often does this happen, and what sanctions are applied?

Also relevant to the case studies, how has monitoring and evaluation been used, or how

OPPORTUNITIES

Opportunities to put the learnings of this Review into practice are discussed in respect to:

1. An international enabling environment with the potential to support a broad range of activities in this field; and

2. Specific opportunities for TRAFFIC's Wildlife TRAPS project to pilot new wild animal trade chain interventions.

Opportunities for others to engage with the issues covered in this Review, both independently and in collaboration with TRAFFIC, are covered in the Recommendations The Standing Committee approved several section.

Since the outbreak of the COVID-19 pandemic, several intergovernmental platforms have pushed for new efforts to make wild animal trade safer. One such proposal was to amend CITES to include an appendix limiting international and domestic trade in species deemed to carry a high risk of zoonotic disease transmission. Historically, CITES appendices have focused on listing species whose conservation is at risk due to international trade, but without regard to zoonotic disease risks²⁰⁰. Research by the United Nations Environment Programme's World Conservation Monitoring Centre and the United Kingdom

government's Joint Nature Conservation Committee found that between 2009 and 2018, 800,000 reported CITES trade transactions involved a taxonomic family associated with one or more zoonotic diseases²⁰¹. In April 2021, the CITES Standing Committee established a working group to consider what role CITES could play in reducing risks of future zoonotic disease emergence via wild animal trade. The working group on the Role of CITES in Reducing Risk of Future Zoonotic Disease Emergence Associated with International Wildlife Trade reported its findings to the 74th Meeting of the CITES Standing Committee in March 2022²⁰². draft Decisions to be presented to the 19th Conference of the Parties to CITES, scheduled for November 2022²⁰³. Before the pandemic, CITES established a working group on traceability in 2016²⁰⁴; one opportunity may be to link these efforts, using traceability to ensure that the trade in CITES-listed species remains safe from zoonotic disease risks. An initial rush to find new solutions and

does it need to be better employed? How have improvements to these systems' supply chain management and traceability been monitored, and how has this information been used to continuously build on these improvements? Have reforms and new regulations succeeded in reducing pathogen presence along the trade chain and in the final product? Are there feedback loops that enable adaptive management of these systems? An example of a plan to enhance food safety in Australia's kangaroo meat industry can be found in this endnote¹⁹⁹. Further exploration of these questions can support the modelling of similar trade management systems in other contexts.

create alliances early in the pandemic is now solidifying into better-organised efforts for exploring interdisciplinary solutions to potential zoonotic disease transmission risks from wild animal trade. Another platform for international collaboration is the WOAH. In March 2021, the

WOAH released its Wildlife Health Framework for improved disease risk management at the human-animal-ecosystem interface, in which the safety and sustainability of legal wild animal trade are essential²⁰⁵. As noted in the case studies, the WOAH has previously played an important role in harmonising health and safety standards for animal trades globally. Since mid-2021, WOAH has convened an Ad Hoc group to work on Draft Guidelines for Reducing the Risk of Disease Spillover Events at Markets Selling Wildlife and along the Wildlife Supply Chain. The outputs of this expert consultation process will aim to provide practical science-based guidance to authorities to improve biosecurity and sanitary measures, reduce risks of disease transmission, improve animal health and welfare, and conserve biodiversity through regulatory principles. For the Wildlife TRAPS Project to pilot interventions to improve the safety and sustainability of legal wild animal trade chains, potential project sites include Cameroon, China, Tanzania, and Viet Nam. The two most promising opportunities to date are in Tanzania and Viet Nam.

In Tanzania, new national government regulations have allowed legal trade in wild meat through government-approved butcheries since late 2020²⁰⁶. The number of licensed butcheries has grown rapidly over the past year, from 34 operating in November 2021 to 74 operating in February 2022, and additional applications for licenses are expected²⁰⁷. The Tanzania Wildlife Management Authority (TAWA) has limited experience in zoonotic disease surveillance and spillover preparedness. Before establishing the 2020 Wildlife Conservation (Game Meat Selling) Regulations, there were no control systems or traceability mechanisms in place to monitor zoonotic pathogens across Tanzania's wild meat trade. There is a need for improved supply chain management and traceability to verify that wild meat sourcing is legal and sustainable and that processing minimises any risks of zoonotic pathogen transmission.

In Viet Nam, a 2021 survey by GlobeScan and WWF showed that wild animal product purchasing, both at physical markets and online, remained more widespread than in neighbouring countries throughout the first

year of the COVID-19 pandemic²⁰⁸. Wild meat consumed in Viet Nam is often sourced from the country's wild animal farms, which may present additional risks of zoonotic disease emergence and amplification²⁰⁹ due to poor husbandry practices, mixing of different species, introduction of wild-caught animals, and insufficient government monitoring²¹⁰ ²¹¹. Species commonly farmed in Viet Nam with potential zoonotic disease risk include civets, primates, porcupines and wild boar²¹². TRAFFIC has been mapping Viet Nam's trade in wild animals consumed for meat and as informal traditional medicines, and is consulting with animal and public health experts to assess which points in the trade are most important to target in reducing risks of zoonotic disease transmission. Simultaneously, TRAFFIC is part of a consortium of NGOs, IGOs, embassies and development agencies working with the government of Viet Nam's One Health Partnership via a Technical Working Group on Wildlife and Pandemic Prevention. This collaboration with Viet Nam's Ministry of Health, Ministry of Agriculture and Rural Development, and Ministry of the Environment and Natural Resources creates a valuable enabling environment for developing solutions to improve management and strengthen the biosecurity of legal wild animal trade chains in the country.

Complementary to these opportunities for pilot interventions under the Wildlife TRAPS project, WWF and TRAFFIC are leading a separate project in Japan and the United States focused on trade in exotic pets. This project aims to define criteria for safe, sustainable and traceable exotic pets, guiding consumers away from species that present risks to conservation and human health and towards species that can be traded and kept safely and sustainably. Collaborating with this project may allow the Wildlife TRAPS project to better understand pet trade as an important example of live animal trade thus far underexplored by the Wildlife TRAPS project. The exotic pet project's system of categorising the suitability of different species may also provide a practical model for communicating safety and sustainability risks with the public, with stakeholders in trade and with policymakers under the scope of the Wildlife TRAPS project.

Tanzania and Vietnam are two promising

national contexts to pilot a range of practical interventions

in Borough Market, London

ANNEXFS

ANNEX I: FURTHER CASE STUDY **EXAMPLES**

OSTRICH MEAT TRADE: RISK MITIGATION MEASURES, LEGISLATION, AND MEAT **OUALITY STANDARDS**

Disease Risk Mitigation Measures

Key mitigation measures to reduce the risk of disease propagation at the Critical Control Points (Figure 10) were as follows: **1)** Tagging and vaccinating (for Newcastle disease) each ostrich under the age of four months before any movement to a raising farm²¹³ ²¹⁴. Tags contain a unique identification number which allows the ostrich to be traced to the farm of origin. When on the raising farm, ostriches are tested for AI at least once every six months. Testing rates are much higher on slaughter farms, usually every 21-28 days; this is dependent on slaughter bookings, as the premovement tests are only valid for 21 days after blood sampling, and these tests are a critical requirement for the issue of a permit to move to the slaughterhouse. Moreover, testing is mandatory before the movement of any flock of birds. Importantly, all ostrich farms in South Africa are tested irrespective of the type and scale of the production system. Testing is done on a biannual basis at a minimum. The birds are also divided into population groups which are additionally tested. All pre-movements are tested in the population group moving and any other population groups on the farm at that time. Post movement testing is also done if the birds are not slaughtered;

2) To limit contact between waterfowl and ostriches, farmers often create their own large feed pellets (~8 mm) to make them inaccessible to waterfowl;

3) Waterfowl-ostrich contact is further reduced by raising feed and water troughs and making them difficult to access for the wild birds and their webbed feet²¹⁵; strategies such as piping, size, and height are all used;

4) Chlorinating water is a critical mitigating measure - waterpoints are a disease reservoir if not cleaned regularly and chlorinated. Birds clean their beaks inside water, and waterpoints

act as a central point for disease transmission (if one bird is infected, then the pathogen can spread to other birds through the waterpoint); 4) Before ostriches are moved to a slaughterhouse, they are tested and guarantined for at least 14 days; 5) Once at the slaughterhouse, they are subjected to an antemortem inspection, then bled out;

6) Heat treatment is often applied as a final control step to eliminate any risk of AI in the meat sample²¹⁶ ²¹⁷.

Critical Legislation and Meat Quality Standards

The most important South African government document regulating ostrich production is veterinary procedural notice (VPN) notice number VPN/04/2012-01 (Revision 6.0). It is issued to State (provincial) veterinary officers and other stakeholders according to their functions and responsibilities. The most important meat quality standard controls from this VPN and the 2018a Department of Agriculture, Forestry and Fisheries (DAFF) report on the South African Ostrich Market Value chain²¹⁸ are summarised as follows (specific sections are provided in Table 1):

1.Abattoirs and packaging plants processing ostrich meat must be approved for ostrich meat exports to the EU. Annex H of VPN notice number VPN/04/2012-01 (Revision 6.0) is critical here. Specifically, an application to the provincial State veterinarian must be made to move ostriches from a registered ostrich farm to an EU-approved abattoir. The registered farm must have ascribed to inter alia quarantine (14 days), could not have been moved from another farm less than three months prior, and must have undergone Newcastle disease vaccination. Both DALRRD/DAFF

and the trade partner/country require inspection of the facility.

2. The South African authority must inspect meat at abattoirs and certify ostrich meat products before exporting to the EU. Provincial State veterinarians collaborate with DALRRD to enforce legislation and control rules found within the South African VPN notice number VPN/04/2012-01 (Revision 6.0) and the EU rules highlighted in Table 1.

3. South African authority must test meat for residues.

4. Before slaughtering, ostriches must be quarantined for at least 14 days. Quarantine camps must be free of vegetation and ticks and have a three-metre area cleaned around the camp. Tick control efforts must accompany a bird before it is slaughtered (tick control is a measure to reduce the risk of Congo fever).

5. Birds are not allowed to have any hormonal treatments or stimulants used in their arowth.

6. Newcastle disease vaccinations are mandatory, and certifications must accompany birds before their slaughter.

7.10 km quarantine radius applied if Newcastle disease outbreak occurs. This means that all farms within this radius are no longer allowed to export their meat to the EU.

8. No organic materials like hav or sand may be used in transporting birds to the abattoir. Vehicles must be disinfected before returning from the slaughterhouse. 9. Al status of the farm where the birds

originated from must be presented when the birds are slaughtered.

10. All birds should be tagged, indicating their origin and traceability – birds must come from registered farms – these farms should have been registered for at least six months before the slaughtering event. Before slaughter, the birds must have lived on a registered farm for at least three months. Pre-movement testing is mandatory for any movement, as is a permit, and movement can only take place to another registered farm. Slaughtering can only take place from registered farms.

South Africa include:

controls.

hatching eggs diseases

The EU has a series of phytosanitary standards (guarantine and biosecurity measures to protect human, animal and plant life from pests and diseases and from additives, toxins and contaminants in food and feed; available here). The "EU import conditions for poultry and poultry products" is arguably the most seminal set of guidelines, containing specific council directives on the poultry trade and those relevant to the ostrich industry (available here, also summarised in Table 1):

Additional notable legislation governing the veterinary control of ostrich production in

A. Article 7 and Article 8(1)(a), (b), (c) and (d) of Directive 2002/99/EC - On the organisational, legal and operative structures of the animal health control system for which assurances and guarantees equivalent to EU legislation have to be provided. B. Chapter 3.1 of the WOAH Terrestrial Code

- On the authorities and the organisation and implementation of official animal health

C. Article 2 of Regulation (EC) No 798/2008 - Definitions.

D. Articles 23(2), 24, 25, and 26 of, and Annex V to Directive 2009/158/EC - Conditions for importation into the EU of poultry and

E. Articles 2 and 5 and Annex I to Directive 2005/94/EC – On the definition of AI and the measures related to its notification. **F.** Articles 3.1.2, 3.4.5 and 3.4.9 of the WOAH Terrestrial Code on the fundamental principles to ensure the quality of Veterinary Services, the availability of veterinary legislation related to their mandate and organisation, and the management of animal

G. Articles 10.4.1 and 10.9.1 of the WOAH Terrestrial Code defining AI (and the occurrence of infection with an AI virus).

TABLE 1

Central legislation from the EU commission and South African government for producing and regulating ostrich meat exports from South Africa. The main purpose, regulation name and a link to the documentation are provided.

Annual Diseases At 1980 (Act 36 of 1884) South Africa If is strictes are to be kept on a piece of land rmoved, the specified piece of land runs, edited accessible to visit for testing weer point the characterization and accessible to act 36 of 1884) Itel accessible to visit for testing weer point the characterization accessible to visit for testing weer point the characterization accessible to visit for testing weer point the characterization accessible to visit for testing weer point the characterization accessible to visit for testing weer point the characterization accessible to visit for testing weer point the characterization accessible to visit for testing weer point the characterization accessible to visit for testing weer point the characterization accessible to visit for testing weer point the characterization accessible to accessible to visit for testing weer point the characterization accessible to accessible to visit for testing weer point the characterization accessible to the comparison of the characterization accessible to accessible to visit for testing weer point the characterization accessible to	Regulation name	International or Lo- cal (South Africa)	Purpose	Link to legislation
VPUG42012.01(Revision 0.0) South Africa It is the fammer's responsibility (sage 11) to ensure detailed information explores for the fill, water vestion terms, or vestion terms, water open in 60, chlorination, for e.c., and inform provincial state vestion terms of use store for terms, water provincial character vestion terms, or vestion terms, water provincial state vestion target on the formation stores for terms, water provincial state vestion target on the formation terms of the considered high risk, and details for the formation is not possible Ittitue/Linear/Lin	Animal Diseases Act, 1984 (Act 35 of 1984)	South Africa	If ostriches are to be kept on a piece of land or moved, the specified piece of land must be registered	https://www.gov.za/ documents/animal-diseas- es-act-12-mar-2015-1128
VPFN04/2012-01(Revision 6.0) South Africa A farm can only be registered if it adheres to biosecurity measures in annex G Inter_fininguit considered high risk, and 6.0) VPFN04/2012-01(Revision 6.0) South Africa If a farm has had Al activity > three times in 24 months, it is considered high risk, and 6.0) Inter_fininguit, considered high risk, and 6.0) Inter_finiiiiiiiiiii	VPN/04/2012-01(Revision 6.0)	South Africa	It is the farmer's responsibility (page 11) to ensure detailed information on ostrich farm compartments, make birds accessible to vets for testing, water point info, chlorination, etc., and inform provincial state veterinarian of any mortalities >5% of total numbers, etc.	<u>https://tinyurl.</u> com/56ke5ujn
VPFUV2712-01(Revision 6.0) South Africa If a farm has had A activity - three times in 24 months. It is considered high risk, and reregistration in ot possible Ittime://introduction constrations in the possible VPFUVD2212-01(Revision 6.0) South Africa Only birds that have tested negative serologically for Ai during the last aix months and operational in a top south a constration in and possible Introduction constrations in a south and operational in the presence 21 days are eligible for movement to under engated farm constrations in a south Africa Only birds that have tested negative serologically for Ai during the last aix months and another registered farm compartment. Intrace./Introduction constrations in a south Africa Intrace./Introduction and the registered farm compartment. Intrace./Introduction constrations in a south Africa Intrace./Introduction and the registered farm compartment. Intrace./Introduction constrations are solved for device on the same solve) constration against Newcastie fidewase must be done before outrices are solved and the solve and the solve and the solve and the solve and the solve constration and compartments for the have are eligible only togged birds are eligible for EU exports. Intrace./Introduction constrations are allowed for chemical residue testing (e.g., Pro- duction chemical residue testing (e.g., Pro	VPN/04/2012-01(Revision 6.0)	South Africa	A farm can only be registered if it adheres to biosecurity measures in annex G	https://tinyurl. com/56ke5ujn
VPNU04/2012-01 (Revision 6.0) South Africa specifically in the previous 21 days are eligible for moment to another registered fame. Second 21 days are eligible for moment to another registered fame. Another registered fame. South Africa Obly brick that have testered registere fame. South Africa Dittice./Injunct. Commission Regulation VPNU04/2012-01 (Revision 6.0) South Africa Testing (routine six-monthy and pre-movement social collegia) is designed to detect the presence or absence of HS of H7 Al strains Initial	VPN/04/2012-01(Revision 6.0)	South Africa	If a farm has had AI activity > three times in 24 months, it is considered high risk, and re-registration is not possible	https://tinyurl. com/56ke5ujn
VPNU04/2012-01[Revision South Africa Ostriches need a flock movement passport and flock mojetter more into a moder to acm/Sekkelijn VPNU04/2012-01[Revision South Africa Testing (routine six-monthly and pre-movement serological) is designed to detect the com/Sekkelijn https://inyud. 6.00 South Africa Testing (routine six-monthly and pre-movement serological) is designed to detect the com/Sekkelijn https://inyud. 6.01 South Africa VPNU04/2012-01[Revision South Africa VPNU04/2012-01[Revision South Africa VPNU04/2012-01[Revision South Africa Only ostriches moved into a tock-prodet enclosure before southereal to takes and the devision of the takes and takeses and takes and takes and takes and takes and takeses and take	VPN/04/2012-01(Revision 6.0)	South Africa	Only birds that have tested negative serologically for AI during the last six months and specifically in the previous 21 days are eligible for movement to another registered farm.	<u>https://tinyurl.</u> com/56ke5ujn
VPNUA/2012-01(Revision 6.0) South Africa Testing (routine six-monthy and pre-movement serologica) is designed to detect the presence or Absence of HS or HZ Al strains Ubits:://input. Com/Selecijin VPNUA/2012-01(Revision 6.0) South Africa All birds > four months of age to be tagged on MSelecijin Integ::/input. Com/Selecijin VPNUA/2012-01(Revision 6.0) South Africa Vaccination against Newcestle disease must be done before ostiches are siluphter of 14 days are eligibic Integ::/input. Com/Selecijin VPNUA/2012-01(Revision 6.0) South Africa Only registered veterinary medicines are allowed for channel residue testing (e.g., Pro- duction enhances; growth stimulants) Integ::/input. Com/Selecijin VPNUA/2012-01(Revision 6.0) South Africa Only registered veterinary medicines are allowed for channel residue testing (e.g., Pro- duction enhances; growth stimulants) Integ::/input. Com/Selecijin Integ::/input. Com/Selecijin Council Directive 2002/99/E0 European Commission Details the anima health reguirements for fresh mest. This Directive forms the legal mana health usar:manal health guarantees for import into the Eligal to com/Selecijin Integ::/input. Commission Regulation (EC) No. 798/2008 European Commission Details the requirements for the importation into the Eli of links of manuto and transit through the community and the seleci no com/Selecijin Integ::/input. Commission Regulation (EC) No. 798/2008 European Commission De	VPN/04/2012-01(Revision 6.0)	South Africa	Ostriches need a flock movement passport and flock register number to be moved to another registered farm compartment.	<u>https://tinyurl.</u> com/56ke5ujn
VPN/04/2012-01(Revision 6.0) South Africa All birds - four months of age to be tagged Intros://invarid. com/568e5ajn VPN/04/2012-01(Revision 6.0) South Africa Vaccination against Newcastle disease must be done before ostriches are slaughtered, only tagged birds are eligible Intros://invarid. com/568e5ajn VPN/04/2012-01(Revision 6.0) South Africa Only ostriches moved into a tick-proted enclosure before alsoghter for 14 days are eligible befor EU export entification (used to combat Crimean Congo Haemonrhagic Fever) Intros://invarid. com/568e5ajn VPN/04/2012-01(Revision 6.0) South Africa Only registered veterinary medicines are allowed for chemical residue testing (e.g., Pro- ductor enhances: growth stimulants). Intros://invarid. com/568e5ajn Council Directive 2002/99/EC European Commission Details the arianal health requirements for fresh meat. This Directive forms the legal throad-ction of products of animal origin for human consumption. It continues to provide throad-ction of products of animal origin for human consumption. It continues to provide throad-ction of products may be imported into and transit through the Community and the trans-Coll. Coll. Col	VPN/04/2012-01(Revision 6.0)	South Africa	Testing (routine six-monthly and pre-movement serological) is designed to detect the presence or absence of H5 or H7 AI strains	https://tinyurl. com/56ke5ujn
VPN/04/2012-01(Revision 6.0) South Africa Vaccination against Nexcestle disease must be done before estriches are slighted. https://tuny.di. com/56keSign VPN/04/2012-01(Revision 6.0) South Africa Only ostriches moved into a tick-proofed enclosure before slaughter for 14 days are eligi- ble for EU export certification (used to combat Chemeal Compa Hemorthagic Fever) https://tuny.di. com/56keSign VPN/04/2012-01(Revision 6.0) South Africa Only registered veterinary medicines are allowed for chemical residue testing (e.g. Pro- duction enhancers, growth stimulants). https://tuny.di. com/56keSign Council Directive 2002/99/EC European Commission Details the animal health requirements for fesh meal. This of animal health uses porening the production, processing, distribution, and construction enhancers, growth stimulants). https://tuny.disc.eti.ex.sunpa. european.commet.test.products of animal longin for human compartments from which poultry torin-CeLEX.320021.0099 Commission Regulation (ED) No. 798/2008 European Commission Details a list of third countries, territories. zones are compartments from which poultry and poultry products may be imported in and transit through the Community and the european commission https://tuny.etc.LEX.3200810098 Commission Regulation (ED) No. 798/2008 European Commission Details the requirements for the import of poultry and poultry meat - most certification of the relevant animal health standards. This implies that the compowered, structured and resourced to implement effective inspection and poublity en	VPN/04/2012-01(Revision 6.0)	South Africa	All birds > four months of age to be tagged	<u>https://tinyurl.</u> com/56ke5ujn
VPN/04/2012-01 (Revision 6.0) South Africa Only catriches moved into a tick-proofed enclosure balers elaughter for 14 days are elleji bie for EU export certification (used to combat Crimean Congo Haemonthagic Fever) Integrittinguit com/56keSujn VPN/04/2012-01 (Revision 6.0) South Africa Only registered veterinary medicines are allowed for chemical residue testing (e.g., Pro- duction enhancers, growth stimulants). Integrittinguit, com/56keSujn Council Directive 2002/99/EC European Commission Details the animal health requirements for fresh meat. This Directive forms the legal introduction of products of animal origin for human consumption. It continues to provide introduction of products of animal origin for human consumption. It continues to provide introduction of products of animal origin for human consumption. It continues to provide introduction of products of animal origin for human consumption. It continues to provide introduction of products of animal origin for human consumption. It continues to provide introduction of products of animal origin for human consumption. It continues to provide introduction of products or animal health quarantees for import into the EU of formunity and the introduction of products or animal health requirements from which poultry and poultry products may be imported finication fragment the continues in the european community and the introduction and puarantee critication of the relevant veterinary and penetry and poultry and poultry meat - most central of these tensing introduction (EU) No 139/2013 European Commission Details the requirements for the import of poultry and poultry solub de a member of the relevant veterinary and general hygine conditions. 2) Country of origin must fulfil the elauscontent/EN/TX- TZ/m	VPN/04/2012-01(Revision 6.0)	South Africa	Vaccination against Newcastle disease must be done before ostriches are slaughtered, only tagged birds are eligible	https://tinyurl. com/56ke5ujn
VPN/04/2012-01(Revision 6.0) South Africa Only registered veterinary medicines are allowed for chemical residue testing (e.g., Pro- 6.0) https://inurel. Council Directive 2002/99/EC European Commission Details the animal health neglitements for fresh meat. This Directive forms the legal basis for all animal health nucles governing the production, processing, distribution, and basis for all animal health nucles governing the production, processing, distribution, and basis for all animal health nucles corrent production, processing, distribution, and basis for all animal health nucles corrent production, processing, distribution, and basis for all animal health nucles corrent production production products on product products on production products on products on product products product products product products on product products product product product products product product product products product products product products product product product product products product	VPN/04/2012-01(Revision 6.0)	South Africa	Only ostriches moved into a tick-proofed enclosure before slaughter for 14 days are eligi- ble for EU export certification (used to combat Crimean Congo Haemorrhagic Fever)	<u>https://tinyurl.</u> com/56ke5ujn
Council Directive 2002/99/EC European Commission Details the animal health requirements for fresh meat. This Directive forms the legal basis for all animal health rules governing the production, processing, distribution, and introduction of products of animal health rules and animal health guarantees for import into the EU of fresh meat. https://eur.lex.europa. Commission Regulation (EC) No. 798/2008 European Commission Details a list of third countries, territories, zones or compartments from which poultry and poultry products may be imported into and transit through the Community and the veterinary certification requirements. https://eur.lex.europa.eu/legal.countert.EV.DTX-Tr./micCELEX.32008.0098 Commission Implementing Decision (EU) No 139/2013 European Commission Details the requirements for the import of no the EU of bids other than poultry four Cex.europa.eu/legal.countert.EV.DTX-Tr./micCELEX.32018.0039 Commission Regulation (EC) No. 798/2008 European Commission Details the requirements for the import of poultry and poultry meat - most central of these tenants are the following: 1) Exporting countries must be empowered, structured and responsible throughout the food chain. The authorities user foor a series of labs for responsible throughout the food chain. The authorities user food before movered, structured and resonant Houge econditions; 2). Occurnty of onign must fulfit the requirements are net. https://eur.lex.europa.eu/legal.countert.EV.DTX.TV.TV.Eur.eu/legal.countert.EV.DTX.eur.eu/legal.countert.EV.DTX.eur.europa.eu/legal.countert.EV.DTX.eur.europa.eu/legal.countert.EV.DTX.eur.europa.eu/legal.countert.EV.DTX.eur.europa.eu/legal.coutent.EV.DTX.eur.europa.eu/legal.countert.EV.DTX.europa.e	VPN/04/2012-01(Revision 6.0)	South Africa	Only registered veterinary medicines are allowed for chemical residue testing (e.g., Pro- duction enhancers, growth stimulants).	https://tinyurl. com/56ke5ujn
Commission Regulation (EC) No. 798/2008 European Commission Details a list of third countries, territories, zones or compartments from which poultry and poultry products may be imported into and transit through the Community and the veterinary certification requirements. https://eur-lex.europa. eu/legal.content/EN/TX- captive birds). Commission Implementing Decision (EU) No 139/2013 European Commission Details the requirements for the import of poultry and poultry meat - most central of these tenants are the following: 1) Exporting countries must have a competent veterinary authority responsible throughout the food chain. The authorities must be empowered, structured and resourced to implement effective inspection and guarantee credible certification of the relevant animal health standards. This implies that the country should be a member of the relevant animal health standards. This implies that the country should be a member of the vorid Organisation for Animal Health (WOAH); 3) Veterinary services must enforce regula- tions; 4) Imports only approved from registered establishments (e.g., slaughterhouses, cutting plants etc.); 5) Veterinary services must enforce regula- tions; 6) Nor. 798/2008 https://eur-lex.europa. eu/legal.content/EN/TX- T2/mi-CELEX:32008R0298 VPN/04/2012-01(Revision 6.0) South Africa Details the veterinary requirements which must be fulfilled when exporting poultry and certain poultry products or al purport of colution comps as detailed in Annex G, points 18-24 or to obtain and keep copies of movement documentation for the movement of ostriches to an EU abattori on condition that ostriches are not lick-infested when they are moved to a slaughterhouse or abattoir. https://linyudl. com//56keSujn VPN/04/2012-01(Re	Council Directive 2002/99/EC	European Commission	Details the animal health requirements for fresh meat. This Directive forms the legal basis for all animal health rules governing the production, processing, distribution, and introduction of products of animal origin for human consumption. It continues to provide harmonised rules and animal health guarantees for import into the EU of fresh meat.	https://eur-lex.europa. eu/legal-content/EN/TX- T/?uri=CELEX:32002L0099
Commission Implementing Decision (EU) No 139/2013European CommissionDetails the requirements for the importation into the EU of birds other than poultry (captive birds).https://eur-lex.europa. eu/legal-content/EN/TX. T/Vuri-CELEX-32013R0139Commission Regulation (EC) No. 798/2008European CommissionEligibility criteria for the import of poultry and poultry meat - most central of these tenants are the following: 1) Exporting countries must have a comportent veterinary authority responsible throughout the food chain. The authorities must be empowered, structured and resourced to implement effective inspection and guarantee credible certification of the relevant veterinary and gueneral hygiene conditions; 2) Country of origin must fulfil the relevant animal health standards. This implies that the country should be a member of the vorid Organisation for Animal Health (WOAH); 3) Veterinary services must enforce regula- tions; 4) Imports only approved from registered establishments (c.g., slauphterhouses, cutting plants etc.); 5) Veterinary services must have at their disposal a series of labs for testing; 6) National authorities must guarante hygiene and public health requirements are met.https://eur-lex.europa. eu/legal-content/EN/TX. T/Vuri=CELEX:32008R0798Commission Regulation (EC) No. 798/2008European CommissionDetails the veterinary requirements which must be fulfilled when exporting poultry and certain poultry products are authorised.https://eur-lex.europa. eu/legal-content/EN/TX. T/Vuri=CELEX:32008R0798VPN/04/2012-01(Revision 6.0)South AfricaIf one is not producing ostrich products for EU export, then they are exempt from VPN requirement to provide pre-slaughter tick-profed isolation camps as detailed in Annex G, points 18-24 or to obtain and keep cop	Commission Regulation (EC) No. 798/2008	European Commission	Details a list of third countries, territories, zones or compartments from which poultry and poultry products may be imported into and transit through the Community and the veterinary certification requirements.	https://eur-lex.europa. eu/legal-content/EN/TX- T/?uri=CELEX:32008R0798
Eligibility criteria for the import of poultry and poultry meat - most central of these tenants are the following: 1) Expositing countries must have a competent veterinary authority responsible throughout the food chain. The authorities must be empowered, structured and resourced to implement effective inspection and guarantee credible certification of the relevant veterinary and general hygiene conditions; 2) Country of origin must fulfil the revelvent animal health standards. This implies that the country should be a member of the verview and implement effective inspection and guarantee credible certification of the relevant veterinary and general hygiene conditions; 2) Country of origin must fulfil the review and implement standards. This implies that the country should be a member of the services must ave at their disposal a series of labs for testing, 6) National authorities must guarantee hygiene and public health requirements are met.https://eur-lex.europa. eu/legal-content/EN/IX- I7/2uri=CELEX:32008R0798Commission Regulation (EC) No. 798/2008European CommissionDetails the veterinary requirements which must be fulfilled when exporting poultry and certain poultry products and a list of those third countries from which imports of these commodities are authorised.https://eur-lex.europa. eu/legal-content/EN/IX- I7/2uri=CELEX:32008R0798VPN/04/2012-01(Revision 6.0)South AfricaIf one is not producing ostrich products for EU export, then they are exempt from VPN requirement to provide pre-slaughter fuck-proofed isolation camps as detailed in Annex G, points 18-24 or to obtain and keep copies of movement documentation for the movement of ostriches to an EU abattoir on condition that ostriches are not tick-infested when they are moved to a slaughterhouse or abattoir.https://tinyurl. com/56keSujn <t< td=""><td>Commission Implementing Decision (EU) No 139/2013</td><td>European Commission</td><td>Details the requirements for the importation into the EU of birds other than poultry (captive birds).</td><td>https://eur-lex.europa. eu/legal-content/EN/TX- T/?uri=CELEX:32013R0139</td></t<>	Commission Implementing Decision (EU) No 139/2013	European Commission	Details the requirements for the importation into the EU of birds other than poultry (captive birds).	https://eur-lex.europa. eu/legal-content/EN/TX- T/?uri=CELEX:32013R0139
Commission Regulation (EC) No. 798/2008European CommissionDetails the veterinary requirements which must be fulfilled when exporting poultry and certain poultry products and a list of those third countries from which imports of these commodities are authorised.https://eur.lex.europa. eu/legal-content/EN/TX: T/2uri=CELEX:32008R0798VPN/04/2012-01(Revision 6.0)South AfricaIf one is not producing ostrich products for EU export, then they are exempt from VPN requirement to provide pre-slaughter tick-proofed isolation camps as detailed in Annex G, points 18-24 or to obtain and keep copies of movement documentation for the movement of ostriches to an EU abattoir on condition that ostriches are not tick-infested when they are moved to a slaughterhouse or abattoir.https://tinyurl. com/56ke5ujnVPN/04/2012-01(Revision 6.0)South AfricaOstriches <6 weeks old exempt from serological testing before movement ment takes place from registered breeding farm to registered breeding farmhttps://tinyurl. com/56ke5ujn	Commission Regulation (EC) No. 798/2008	European Commission	Eligibility criteria for the import of poultry and poultry meat - most central of these tenants are the following: 1) Exporting countries must have a competent veterinary authority responsible throughout the food chain. The authorities must be empowered, structured and resourced to implement effective inspection and guarantee credible certification of the relevant veterinary and general hygiene conditions; 2) Country of origin must fulfil the relevant veterinary and general hygiene conditions; 2) Country of origin must fulfil the relevant animal health standards. This implies that the country should be a member of the World Organisation for Animal Health (WOAH); 3) Veterinary services must enforce regula- tions; 4) Imports only approved from registered establishments (e.g., slaughterhouses, cutting plants etc.); 5) Veterinary services must have at their disposal a series of labs for testing; 6) National authorities must guarantee hygiene and public health requirements are met.	https://eur-lex.europa, eu/legal-content/EN/TX- T/?uri=CELEX:32008R0798
VPN/04/2012-01(Revision 6.0) South Africa If one is not producing ostrich products for EU export, then they are exempt from VPN requirement to provide pre-slaughter tick-proofed isolation camps as detailed in Annex G, points 18-24 or to obtain and keep copies of movement documentation for the movement of ostriches to an EU abattoir on condition that ostriches are not tick-infested when they are moved to a slaughterhouse or abattoir. https://tiny.url. com/56ke5ujn VPN/04/2012-01(Revision 6.0) South Africa Ostriches <6 weeks old exempt from serological testing before movement of ostriches to anot have to be subjected to serology or PCR testing as long as move- ment takes place from registered breeding farm to registered breeding farm https://tiny.url. com/56ke5ujn	Commission Regulation (EC) No. 798/2008	European Commission	Details the veterinary requirements which must be fulfilled when exporting poultry and certain poultry products and a list of those third countries from which imports of these commodities are authorised.	https://eur-lex.europa. eu/legal-content/EN/TX- T/?uri=CELEX:32008R0798
VPN/04/2012-01(Revision 6.0) South Africa Ostriches <6 weeks old exempt from serological testing before movement https://tiny.url. com/56ke5ujn VPN/04/2012-01(Revision 6.0) South Africa Breeder birds do not have to be subjected to serology or PCR testing as long as move- ment takes place from registered breeding farm to registered breeding farm https://tiny.url. com/56ke5ujn	VPN/04/2012-01(Revision 6.0)	South Africa	If one is not producing ostrich products for EU export, then they are exempt from VPN requirement to provide pre-slaughter tick-proofed isolation camps as detailed in Annex G, points 18-24 or to obtain and keep copies of movement documentation for the movement of ostriches to an EU abattoir on condition that ostriches are not tick-infested when they are moved to a slaughterhouse or abattoir.	https://tinyurl. com/56ke5ujn
VPN/04/2012-01(Revision 6.0) South Africa Breeder birds do not have to be subjected to serology or PCR testing as long as move- ment takes place from registered breeding farm to registered breeding farm https://tinyurl.com/56ke5ujn	VPN/04/2012-01(Revision 6.0)	South Africa	Ostriches <6 weeks old exempt from serological testing before movement	<u>https://tinyurl.</u> com/56ke5ujn
	VPN/04/2012-01(Revision 6.0)	South Africa	Breeder birds do not have to be subjected to serology or PCR testing as long as move- ment takes place from registered breeding farm to registered breeding farm	https://tinyurl. com/56ke5ujn

FISHERIES: MARINE STEWARDSHIP COUNCIL

The Marine Stewardship Council (MSC), a consumer label for sustainably harvested seafood, provides a valuable model for implementing and marketing traceability internationally. As a voluntary certification scheme, the primary effort of collecting data for traceability falls on the producing companies, who must show that the fishery from which they source their seafood and the fishing practices they use are sustainable, as verified by regular third-party audits²¹⁹.

To be eligible to participate in the MSC certification, the company and the fishery it sources from must get a pre-assessment from a third-party organisation to certify

their sustainability. The cost of these initial steps can range from \$10,000 to \$100,000, depending on the complexity of the fishery²²⁰.

For fisheries that do not readily meet MSC's standards, participation in Fishery Improvement Projects²²¹ (FIPs) creates a fiveyear window for these fisheries to progress towards the standard. Some fisheries have tried to reap the programme's benefits by stating they are in the FIPs class without making improvements and remaining in this class beyond the five-year window for improvement; extra auditing is needed to verify that these actors are progressing²²². This transitional approach towards compliance may be a good model for wild animal trade actors with a low risk of EIDs and are economically important to maintain.

A new MSC requirement now mandates that a company's various types of fishing gear must all be MSC-approved so that actors cannot simultaneously harvest both MSC and non-MSC products²²³. Given the mixing of legal and illegal practices that is widespread in the trade of wild mammals and birds, such as the laundering of illegal wild-caught specimens into legal captive breeding sites (wild animal farms), it is vital to establish similarly tight requirements for wild animal trade chains.

If the pre-assessment for participation in MSC is successful, the company then implements traceability by imposing a digital data collection solution, such as blockchain, for all their upstream suppliers. MSC requires every link in the supply chain to obtain certification for chain of custody to make sure products can be traced back to their source. Rather than using MSC's platform to enter data, MSC asks businesses to maintain their own data systems. MSC later pulls businesses' data into their system for verification. The businesses must keep track of their national legal regulations and requirements for export, as applicable. Rather than requiring specific data

PLANT TRADE: FAIRWILD

FairWild is a voluntary certification scheme for wild-collected plant ingredients. The certification aims to support the ecological sustainability of wild plant harvesting and fair business practices to support the livelihoods elements, MSC instead sets bounds for what a company's information needs to demonstrate to comply with MSC's sustainability standards²²⁴.

The main cost of participating in MSC goes to third-party auditor companies. MSC charges an annual royalty of 0.5% for applying the MSC logo to the company's seafood products and packaging, revenue which feeds back into MSC's research and development²²⁵.

A third-party certification scheme like MSC that is not fully integrated into a company's supply chain can make it challenging to track down issues that arise, but MSC does have procedures to deal with such issues. If an operator is noncompliant, MSC labels are immediately separated from that company's products. A food safety issue will trigger a non-conforming product procedure; triggering a recall. Customers and retailers must then be notified within two days to recall products and relabel them. Upon receipt of any MSC products, even outside of a recall situation, a retailer must check that their suppliers' MSC documentation is valid. MSC conducts random sampling of products and forensic testing for DNA species identification and is now developing new approaches to test that product claims match their catch location²²⁶.

Due to the onus of data collection falling on the producer for MSC certification and the relative expense of its required audits, MSC's approach to traceability is best suited to large scale producers. These large-scale producers are often already using traceability practices for other systems, whether to prove their data to access export markets or participate in other standards, like FairTrade and halal. For smaller-scale producers, the expense of setting up their own data collection technology and funding audits can be prohibitive, so simpler mobile phone App-based traceability tools like SharkTrace²²⁷ and Abalobi²²⁸ offer more accessible solutions.

of harvesters²²⁹. Like MSC's system of FIPs discussed in the previous section, FairWild offers producers opportunities for continuous improvement towards the level of certification, gradually increasing performance over the

first several years of participation as guided by annual audit feedback²³⁰. These potential suppliers can choose to be listed on FairWild's website to have their efforts recognised by prospective buyers²³¹. In these first few years of engaging with a certification scheme and working to improve practices toward its standards, small-scale producers typically need funding support from donors or larger companies. The cost of improvement can be burdensome when the producer is not yet able to achieve certification and the sales growth it may bring.

FairWild's criteria for traceability and sustainable collection, shown in the charts below, provide a helpful starting point in considering the level of detail needed to ensure traceable and sustainable wild product sourcing:

TABLE 2

FairWild's traceability criteria. Source: FairWild Standard Version 2.0: Performance Indicators (2010)

CP N°	Control Points 10.2 Traceability	MAX	Score
10.2.a	Deliveries / purchases are registered in a buying record which states at least the date, the collectors name or code, collection area, delivered quantity and product details and the FairWild certification status; (0) no or very incomplete records; (1=M) basic records with at least name and quantities as well as collection area for monitoring activities; (2) adequate, reliable records; (3) very good records.	3 1=M	
10.2.b	The collector is issued a receipt , which indicates at least the date, collectors' name (or code), species and product, delivered quantities and FairWild certification status: (0) no receipts; (1) very simple receipts, not fully implemented; (2) adequate receipts; (3) very well-documented purchase system.	3	
10.2.c	There is appropriate documentation of central processing / packing activities (processing / packing diary) to allow traceability of batches: (0) no documentation; (1) very basic / slightly incomplete; (2=M from Year 2) adequate record; (3) advanced documentation system.	3 2=M from Yr 2	
10.2.d	For every processed product (i.e. cleaned, sorted, cut, sifted material) the processing ratio (collected quantities to final processed weight) and composition (in case of multi ingredients products) is known: (0) not known; (1) some basic information; (2) documented; (3) very good processing documentation.	3	
10.2.e	Collection and post-collection identification, labelling, and record keeping procedures allow to trace back each batch of goods to the area where it was collected: (0) no traceability back to collection area; (1) very basic / not yet consistently implemented; (2=M from Year 3) simple system ensures traceability to collection area; (3) consistent lot number system.	3 2=M from Yr 3	
10.2.f	Purchase or collection of the same target species outside of FairWild certification scope: (0) the collection operation collects same species outside FairWild scope; (1=M) same products are bought in or collected in other regions: clear separation and labelling procedures, well documented purchase and sale; (2) the collection operation does not buy in or collect the same species outside FairWild certification; (3) entire collection operation activity is FairWild certified. If not applicable \rightarrow (3)	3 1=М	
10.2.g	Products are labelled correctly when leaving the collection operation to the next buyer: FairWild certification status of the products, name of product, lot number or code of purchase centre: (0) no consistent labelling; (1) some improvements needed; (2) correct labelling, or alternatively this information is given on accompanying papers that can be clearly linked to the respective lot; (3) lot number system and very good labels.	3	
10.2.h	Documentation of all exports and local sales allow a full verification of product flow: (0) no export / sales documents; (1) poor / incomplete records; (2) detailed invoices with quantities, product details, lot numbers or similar; (3) data base and detailed invoices.	3	
10.2.i	Invoices and shipping documents specify the FairWild certification status of the products; (0) no reference; (1=M) certification status indicated on invoice; (2) quality on all shipping documents; (3) very good labelling and traceability system.	3 1=M	
10.2.j	Invoices or sales contracts specify the FairWild Premium: (0) not specified and not even defined; (1) agreed but not specified in documents; (2) adequately documented.	2	
10.2.k	Transaction certificates for all sales of the certified products issued by certification body: (0) none; (1) for some sales; (2) available for all FairWild sales.	2	

TABLE 3

FairWild's criteria for sustainable collection. The wild-collection operation ensures that only trained and competent collectors collect the target resources. Source: FairWild Standard Version 2.0: Performance Indicators (2010)

CP N°	Control Points 9.3 Implementation of sustainable collection measures by collectors	MAX	Scor e
9.3.a	Collectors' registers are available in order to make sure that all collectors are well trained and know the rules of collection: (0) no registers; (1) incomplete registers; (2=M from Year 2) adequate and complete registers with full names, code number, address / village; (3) good registers with names of household members who also actively participate in collection.	3 2=M from Yr 2	
9.3.b	Products are only bought from registered and trained collectors: (0) no purchase system in place or system not implemented at all; (1) purchase system in development; (2=M from Year 2) purchase system ensures that products are only bought from registered collectors; (3) very well organised purchase system.	3 2=M from Yr 2	
9.3.c	Under the name of one registered collector only his / her immediate family members (members who live in same household) are active in the collection . The activity of these collectors is supervised and found OK (same rules as for registered collectors): (0) no / minimal information on collectors; (1) unsupervised "umbrella collectors" (one collector registered with unknown number of actual collectors); (2=M from Year 3) only members of same household collect and receive information from main collector; number of collecting household members known / documented; (3) all collectors are known by name, all people actively collecting are encouraged to participate in trainings.	3 2=M from Yr 3	
9.3.d	The collectors are adequately informed about the boundaries of the collection area and about the areas excluded from collection as well as small-scale contamination sources where organic products may not be harvested: (0) collectors not informed / aware of such boundaries; (1=M) basic understanding and no major inner boundaries owing to contamination; (2) adequately informed; (3) collectors are very knowledgeable.	3 1=M	
9.3.e	 The collectors are trained, knowledgeable and competent in the following aspects: Plant to be collected (including which parts, minimum quality requirements etc.) Sustainable collection methods (as per internal rules) Post-harvest handling of collected material (0) not aware of internal collection and handling instructions; (1=M for Year 1) basic understanding; (2=M from Year 2) collectors are trained, knowledgeable and competent in the implementation of internal instructions; (3) collectors are very knowledgeable. 	3 1=M Yr 1 2=M from Yr 2	
9.3.f	Implementation of the collection instructions: harvest methods, harvested parts: (0) not implemented; (1=M Year 1&2) basic implementation of collection instructions; (2=M from Year 3) adequate implementation management in place; collectors collect according to collection instructions; (3) collectors well familiar with collection instructions.	3 1=M Yr 1&2 2=M from Yr 3	
9.3.g	Evidence of collection frequency based on physical visits and interviews with collectors: (0) clearly higher frequencies on certain sites, collectors not aware of frequency restrictions AND indication of over-harvesting; (1=M Year 1&2) no indication of overall over-harvesting, but collectors not aware of frequency limitations or commonly harvesting more often than instructed in certain areas / plots; (2=M from Year 3) harvest as per official collection frequency, no over-harvesting evident even on highly frequented spots; (3) very low impact of harvest activity. High Risk species → see additional indicator 9.3.g (Part II)	3 1=M Yr 1&2 2=M from Yr 3	
9.3.h	Collectors do not collect the same product in quality and quantity not compliant with FairWild requirements (outside collection area / not according to the rules of this Standard): (0) collection of same target plant for different buyer companies and without consideration of collection rules; (2) all target plants collected are collected basically according to the internal collection instructions; (3) only FairWild collection according to FairWild management plan.	3	
9.3.i	Effective measures are taken to ensure that any identified contaminated areas or areas with intense agriculture are excluded from collection (collection instructions, training of collectors) (0) collection from contaminated areas (1) no actual measures taken, but clearly no collection from any contaminated areas (2=M from Year 2) no sources of contamination OR effective measures ensure that no collection from contaminated areas. If not applicable or if certified organic \rightarrow (2)	3 2=M from Yr 2	
9.3.j	Implementation of the collection instructions: maximum quantities: (0) no system in place; (1) basic system; (2=M) adequate implementation management in place; collectors only collect strictly according to collection rules and are informed on maximum quantities; (3) collectors are fully aware of collection rules and actively contribute to their implementation through discussions and monitoring activities.	3 2=M	

ANNEX II: BIBLIOGRAPHY FOR THE LITERATURE REVIEW

- Bateman, Alexis. 2015. Tracking the Value of Traceability. https://ctl.mit.edu/sites/ctl.mit.edu/files/SCMR1511_InnovStrategies.pdf. CSIRO. 2007. Australian Standard for the Hygienic Production of Wild Game Meat for Human Consumption. https://www.publish. .
- csiro au/book/5697/
- FAO, OIE, WHO. 2020. Joint Risk Assessment Operational Tool (JRA OT). https://www.who.int/initiatives/tripartite-zoonosis-guide/ joint-risk-assessment-operational-tool.
- FAO. 2011. A value chain approach to animal diseases risk management Technical foundations and practical framework for field application. http://www.fao.org/3/i2198e/i2198e.pdf.
- Grant, Jason; Freitas, Ben; Wilson, Tim. 2021. Traceability systems: Potential tools to deter illegality and corruption in the timber and fish sectors? https://www.worldwildlife.org/pages/tnrc-topic-brief-traceability-systems-potential-tools-to-deter-illegality-andcorruption-in-the-timber-and-fish-sectors.
- Health & Consumer Protection Directorate-General, European Commission. 2007. Factsheet: Food Traceability. https://ec.europa.eu/ food/system/files/2016-10/gfl_reg_factsheet_traceability_2007_en.pdf.
- Kock, Richard; Caceres-Escobar, Hernan. 2022. Situation analysis on the roles and risks of wildlife in the emergence of human infectious diseases. IUCN Species Survival Commission. https://portals.iucn.org/library/node/49880.
- Lehr, Heiner. 2016. Traceability Study in Shark Products. CITES. https://cites.org/sites/default/files/eng/com/sc/66/Inf/E-SC66-Inf-11. . pdf.
- Lehr, Heiner; Baxter, Andrew. 2017. Developing traceability systems for CITES-listed species (Appendices II and III). https://cites.org/ sites/default/files/eng/prog/traceability/Developing_traceability_systems_CITES_species.pdf.
- Norwood, F. Bailey; Peel, Derrell. 2020. Supply Chain Mapping to Prepare for Future Pandemics. https://onlinelibrary.wiley.com/doi/ full/10.1002/aepp.13125.
- Pham, Hung Xuan; Bui, Tinh Duc; Williams, David Aled, 2021, When anti-corruption innovations meet reality; Electronic payments in remote areas. https://www.worldwildlife.org/pages/tnrc-blog-when-anti-corruption-innovations-meet-reality-electronic-payments-inremote-areas.
- UNEP and ILRI. 2020. Preventing the next pandemic Zoonotic diseases and how to break the chain of transmission. https://www. unep.org/resources/report/preventing-future-zoonotic-disease-outbreaks-protecting-environment-animals-and.
- United States Centers for Disease Control and Prevention. 2021. Reducing the Risk of SARS-CoV-2 Spreading between People and Wildlife. https://www.cdc.gov/healthypets/covid-19/wildlife.html.
- Wikramanayake, Eric; Olson, David; Pfeiffer, Dirk; Magouras, Ioannis; Conan, Anne; Ziegler, Stefan; Bonebrake, Timothy C. 2021. A Framework for Rapid Assessment of Wildlife Markets in the Asia-Pacific Region for Relative Risk of Future Zoonotic Disease Outbreaks. https://zenodo.org/record/4569263#.YW6YIxpByUn

ANNEX III: LIST OF INTERVIEWEES

- Dr Celia Abolnik, Scientist Professor NRF-DST South African Research Chair in Poultry Health and Production
- Steven Broad, Consultant 4responsible, IUCN Sustainable Use and Livelihoods Specialist Group
- Peter Coetzee, Chairman Agri Western Cape Branch (South Africa)
- Dr Sinh Dang-Xuan, Post-Doctoral Scientist ¬– International Livestock Research Institute
- Dr Anel Engelbrecht, Scientist Western Cape Department of Agriculture (South Africa)
- Dr Amanda Fine, Director of One Health Wildlife Conservation Society
- Dr Tiggy Grillo, National Coordinator Wildlife Health Australia; Scientific Officer Wildlife Health Programme WOAH , Co-chair, IUCN Wildlife Health Specialist Group
- Dr Adriaan Gutteridge, Fisheries Assessment Manager Marine Stewardship Council
- Fave Hartman. Consultant ProFound
- . Douglas Jobson, General Manager – Macro Meats Adelaide
- Dennis King, Executive Officer Kangaroo Industry Association of Australia . Dr Richard Kock, Professor of Wildlife Health and Emerging Diseases - Royal Veterinary College, University of London; Former Co-.
- chair IUCN Wildlife Health Specialist Group
- Dr Hu Suk Lee, Veterinary Epidemiologist International Livestock Research Institute
- . Shen Yan Liow, Senior Supply Chain Standards Programme Manager – Marine Stewardship Council
- Dr Michael O'Leary, Senior Infectious Diseases Advisor, USAID Viet Nam .
- Dr Adriaan Olivier, Industry Veterinarian South African Ostrich Business Chamber
- . Dr Pawin Padungtod, Senior Technical Coordinator - FAO Emergency Centre for Transboundary Animal Diseases
- . Dr Ekta Patel, Scientist and Communications Manager for Biosciences - International Livestock Research Institute
- Joey Potgieter, Chairman Ostrich Producers Organization (South Africa)
- Mark Ryan, Former Deputy Director General International Council for Game and Wildlife Conservation
- Dr Fred Unger, Senior Scientist International Livestock Research Institute

ENDNOTES

- 1 https://zenodo.org/record/6291628#.Yh1WgxPMJhA
- 2 https://zenodo.org/record/6299116#.Yh1WhhPMJhA
- 3 https://www.researchsguare.com/article/rs-1370392/v1
- 4 https://cites.org/eng/CPW_Statement_covi19_wildlife_16102020
- 5 https://wwf.panda.org/discover/our_focus/wildlife_practice/?1567966/Assessing-risk-factors-for-viral-disease-emergence-withinthe-wildlife-trade
- 6 https://doi.org/10.1016/j.pt.2016.04.007
- 7 https://www.pnas.org/content/pnas/117/17/9423.full.pdf
- 8 https://agrilinks.org/post/food-safety-and-trade-role-traceability-systems
- 9 https://cites.org/eng/CPW_Statement_covi19_wildlife_16102020
- 10 https://www.worldwildlife.org/pages/tnrc-blog-commodity-supply-chain-traceability-initiatives-and-their-anti-corruption-potential
- 11 https://ideas.repec.org/a/ags/jloagb/14666.html
- 12 https://wwf.panda.org/discover/our_focus/wildlife_practice/?1567966/Assessing-risk-factors-for-viral-disease-emergence-withinthe-wildlife-trade
- 13 https://portals.iucn.org/library/node/49880
- 14 https://www.thelancet.com/journals/lanplh/article/PIIS2542-5196(21)00142-X/fulltext
- 15 Stephen, Craig, Berezowski, John et al. (2021). A Rapid Review of Evidence on Managing the Risk of Disease Emergence in the Wildlife Trade. Preparedness and Resilience Department of the World Organisation for Animal Health. Paris, France. https://web. oie.int/downld/WG/Wildlife/OIE_review_wildlife_trade_March2021.pdf
- 16 https://www.traffic.org/publications/reports/situation-analysis-social-and-behaviour-change-messaging-on-wildlife-trade-and-zoonotic-disease-risks/
- 17 https://wwf.panda.org/discover/our_focus/wildlife_practice/?1567966/Assessing-risk-factors-for-viral-disease-emergence-withinthe-wildlife-trade
- 18 https://wwf.panda.org/discover/our_focus/wildlife_practice/?1567966/Assessing-risk-factors-for-viral-disease-emergence-withinthe-wildlife-trade
- 19 https://wwf.panda.org/discover/our_focus/wildlife_practice/?1567966/Assessing-risk-factors-for-viral-disease-emergence-withinthe-wildlife-trade
- 20 Lee, J, Hughes, T, Lee, M-H, Field, H, et al. (2020). No evidence of coronaviruses or other potentially zoonotic viruses in Sunda pangolins (Manis javanica) entering the wildlife trade via Malaysia. bioRxiv, 2020.2006.2019.158717, doi:10.1101/2020.06.19.158717.
- 21 Xiao, K, Zhai, J, Feng, Y, Zhou, N, et al. (2020). Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature doi:10.1038/s41586-020-2313-x.
- 22 Huong, NQ, Nga, NTT, Long, NV, Luu, BD, et al. (2020). Coronavirus testing indicates transmission risk increases along wildlife supply chains for human consumption in Viet Nam, 2013-2014. BioRxiv, 2020.06.05.098590. https://doi. org/10.1101/2020.06.05.098590
- 23 https://wwf.panda.org/discover/our_focus/wildlife_practice/?1567966/Assessing-risk-factors-for-viral-disease-emergence-withinthe-wildlife-trade
- 24 https://wwf.panda.org/discover/our_focus/wildlife_practice/?1567966/Assessing-risk-factors-for-viral-disease-emergence-withinthe-wildlife-trade
- 25 https://www.dfat.gov.au/sites/default/files/7-sanitary-and-phytosanitary-measures.pdf
- 26 https://www.worldwildlife.org/pages/tnrc-wildlife-supply-chain-corruption
- 27 https://www.fao.org/documents/card/en/c/cb1520en/
- 28 https://portals.iucn.org/library/sites/library/files/documents/2014-007.pdf
- 29 https://www.worldwildlife.org/pages/tnrc-blog-commodity-supply-chain-traceability-initiatives-and-their-anti-corruption-potential
- 30 https://www.researchgate.net/publication/264938218_Comparison_of_Global_Food_Traceability_Regulations_and_Requirements
- 31 https://www.researchgate.net/publication/264938218_Comparison_of_Global_Food_Traceability_Regulations_and_Requirements
- 32 https://www.researchgate.net/publication/264938218_Comparison_of_Global_Food_Traceability_Regulations_and_Requirements
- 33 https://www.researchgate.net/publication/264938218_Comparison_of_Global_Food_Traceability_Regulations_and_Requirements
- 34 https://ec.europa.eu/food/horizontal-topics/general-food-law/food-law-general-requirements_en#.~:text=The%20General%20 Food%20Law%20Regulation%20defines%20traceability%20as%20the%20ability,food%2Ffeed%20from%20the%20market
- 35 https://www.researchgate.net/publication/264938218_Comparison_of_Global_Food_Traceability_Regulations_and_Requirements

- 37 https://cites.org/esp/prog/Cross-cutting_issues/traceability
- 38 http://www.traffic.org/general-reports/traffic_pub_gen103.pdf
- 39 https://www.dfat.gov.au/sites/default/files/7-sanitary-and-phytosanitary-measures.pdf
- 40 https://www.dfat.gov.au/sites/default/files/7-sanitary-and-phytosanitary-measures.pdf
- 41 https://cites.org/sites/default/files/eng/com/sc/74/E-SC74-21-002.pdf
- 42 Heinrich, M., F. Scotti, A. Andrade-Cetto, M. Berger-Gonzalez, J. Echeverría, F. Friso, F. GarciaCardona, A. Hesketh, M. Hitziger, C. article/10.3389/fphar.2020.00765
- 43 https://cas.com.au/haccp-food-safety/?kw=haccap&cpn=11916765796&utm_term=haccap&utm_campaign=HAC-CP+%26+Food+Safety+NSW+ACT+%23CCID1&utm_source=adwords&utm_medium=ppc&hsa_acc=2696640471&hsa_ 1tOf_IONYR7D2whtqpkHBExoCzSMQAvD_BwE
- 44 https://academic.oup.com/af/article/8/4/9/5087923?login=true
- ment according to the HACCP concept, Veterinary Quarterly, 18:4, 121-126, DOI: 10.1080/01652176.1996.9694632.
- 46 https://academic.oup.com/af/article/8/4/9/5087923?login=true
- 47 https://www.thelancet.com/journals/lanplh/article/PIIS2542-5196(21)00142-X/fulltext
- 48 https://www.thelancet.com/journals/lanplh/article/PIIS2542-5196(21)00142-X/fulltext
- 49 https://cas.com.au/haccp-food-safety/?kw=haccap&cpn=11916765796&utm_term=haccap&utm_campaign=HAC-CP+%26+Food+Safety+NSW+ACT+%23CCID1&utm_source=adwords&utm_medium=ppc&hsa_acc=2696640471&hsa_ 1tOf_IONYR7D2whtgpkHBExoCzSMQAvD_BwE
- 50 https://www.forbes.com/advisor/investing/what-is-blockchain/
- 51 https://fishcoin.co/
- 52 https://www.stellar.org/learn/intro-to-stellar?locale=en
- 53 https://www.cbi.eu/events/webinar-blockchain-natural-ingredients-and-other-agricultural-products
- 54 https://mfish.co/
- 55 https://www.cbi.eu/events/webinar-blockchain-natural-ingredients-and-other-agricultural-products
- 56 https://www.frontiersin.org/articles/10.3389/fbloc.2020.567175/full
- 57 https://cites.org/sites/default/files/eng/com/sc/74/E-SC74-21-002.pdf
- 58 https://unctad.org/system/files/official-document/ditctab2021d2_en.pdf
- 59 https://unctad.org/news/sustainability-standards-are-powerful-tool-protect-biodiversity
- 60 https://blog.ift.org/food-traceability-in-a-mobile-world
- 61 https://ec.europa.eu/eip/agriculture/en/news/inspirational-ideas-app-find-out-where-our-food-comes
- 62 https://www.traffic.org/sharktrace/
- 63 Thomson, G. R., Penrith, M. L., Atkinson, M. W., Thalwitzer, S., Mancuso, A., Atkinson, S. J., & Osofsky, S. A. (2013). International trade standards for commodities and products derived from animals: the need for a system that integrates food safety and animal disease risk management. Transboundary and emerging diseases, 60(6), 507-515.
- 64 Australian Government's Department of Agriculture, Fisheries and Forestry (DAFF) in litt. to TRAFFIC, 2022.
- 65 Thomsen, D.A. and Davies, J. (2007). Rules, norms and strategies of kangaroo harvest. Australasian Journal of Environmental Management, 14(2), pp.123-133.
- 66 Jackson, S. and Vernes, K.A. (2010). Kangaroo: portrait of an extraordinary marsupial. Allen & Unwin.
- 67 Thomsen, D.A. and Davies, J. (2007). Rules, norms and strategies of kangaroo harvest. Australasian Journal of Environmental Management, 14(2), pp.123-133.
- 68 DAFF in litt. to TRAFFIC, 2022.
- lia. Animal Frontiers, 4(4), 38-45.
- 70 Dawson, T.J. (2012). Kangaroos. CSIRO Publishing.

36 https://www.researchgate.net/publication/264938218_Comparison_of_Global_Food_Traceability_Regulations_and_Requirements

Maake, M. Politi, C. Spadafora, amd R. Spadafora (2020). Access and Benefit Sharing Under the Nagoya Protocol-Quo Vadis? Six Latin American Case Studies Assessing Opportunities and Risk. Frontiers in Pharmacology 11. P. 765. https://www.frontiersin.org/

cam=11916765796&hsa_grp=116897409058&hsa_ad=488301823151&hsa_src=g&hsa_tgt=kwd-296032745214&hsa_kw=haccap&hsa_mt=e&hsa_net=adwords&hsa_ver=3&gclid=CjwKCAiAmrOBBhA0EiwArn3mfMMkgBYWCw6gHKdgqzVfCXQpjDgmO0g-

45 J.P.T.M. Noordhuizen & H.J. Welpelo (1996). Sustainable improvement of animal health care by systematic quality risk manage-

cam=11916765796&hsa_grp=116897409058&hsa_ad=488301823151&hsa_src=g&hsa_tgt=kwd-296032745214&hsa_kw=haccap&hsa_mt=e&hsa_net=adwords&hsa_ver=3&gclid=CjwKCAiAmrOBBhA0EiwArn3mfMMkgBYWCw6gHKdgqzVfCXQpjDgmOOg-

69 Spiegel, N. B., & Wynn, P. C. (2014). Promoting kangaroo as a sustainable option for meat production on the rangelands of Austra-

- 71 Thomsen, D.A. and Davies, J. (2007). Rules, norms and strategies of kangaroo harvest. Australasian Journal of Environmental Management, 14(2), pp.123-133.
- 72 Dawson, T.J. (2012). Kangaroos. CSIRO Publishing.
- 73 Thomsen, D.A. and Davies, J. (2007). Rules, norms and strategies of kangaroo harvest. Australasian Journal of Environmental Management, 14(2), pp.123-133.
- 74 Spiegel, N. B., & Wynn, P. C. (2014). Promoting kangaroo as a sustainable option for meat production on the rangelands of Australia. Animal Frontiers, 4(4), 38-45.
- 75 Shepherd, N.C. (1983). The feasibility of farming kangaroos. The Rangeland Journal 5, 35-44.
- 76 Commonwealth of Australia. (1988). Kangaroos. Canberra.
- 77 Dawson, T.J. (2012). Kangaroos. CSIRO Publishing.
- 78 https://www.publish.csiro.au/book/422/
- 79 https://www.publish.csiro.au/book/5697/
- 80 https://agrifutures.com.au/product/national-code-of-practice-for-the-humane-shooting-of-kangaroos-and-wallabies-for-commercial-purposes/
- 81 AgriFutures Australia. (2020). National Code for Humane Shooting of Kangaroos and Wallabies.
- 82 https://www.awe.gov.au/biosecurity-trade/market-access-trade/improved-export-legislation
- 83 https://www.publish.csiro.au/book/5697/
- 84 Agriculture Victoria. (2016). Review of diseases and pathogens of invasive animals that may present food safety and human health risks. Chief Veterinary Officer's Unit. Victoria.
- 85 Kangaroo Industry Association of Australia (KIAA), pers comm, 2021.
- 86 DAFF in litt. to TRAFFIC, 2022.
- 87 https://www.abc.net.au/news/rural/2014-08-18/kangaroo-meat-ban/5677656
- 88 Compared with livestock, there is a low prevalence of generic E. coli detected on kangaroo carcasses. The occasional detection of generic E. coli is not necessarily a significant issue. However, the Australian Government requires that detections above prescribed thresholds need to be investigated and any identified issues corrected. Detection of Shiga toxin-producing E. coli (STEC) is a separate issue and some export markets may reject raw meat found to contain STEC. Source: DAFF in litt. to TRAFFIC, 2022.
- 89 Mawson, M. (2011). Kangaroo industry wild game training initiative. Rural Industries Research and Development Corporation.
- 90 https://www.efsa.europa.eu/en/efsajournal/pub/583
- 91 https://www.mpi.govt.nz/dmsdocument/41136-Risk-Profile-UpdateToxoplasma-gondii-in-red-meat-and-meat-products
- 92 DAFF in litt. to TRAFFIC, 2022.
- 93 https://www.publish.csiro.au/ebook/download/pdf/422
- 94 DAFF in litt. to TRAFFIC, 2022.
- 95 https://www.wildlife.vic.gov.au/__data/assets/pdf_file/0023/507164/2021-Kangaroo-Harvest-Quota-Determination.pdf
- 96 https://www.environment.sa.gov.au/topics/plants-and-animals/abundant-species/kangaroo-conservation-and-management/ quotas-harvest-data
- 97 KIAA, pers comm, 2021
- 98 https://www.britannica.com/animal/kangaroo/Behaviour
- 99 https://www.publish.csiro.au/book/5697/
- 100 https://www.agrifutures.com.au/product/national-code-of-practice-for-the-humane-shooting-of-kangaroos-and-wallabies-forcommercial-purposes/
- 101 https://www.publish.csiro.au/book/5697/
- 102 DAFF in litt. to TRAFFIC, 2022.
- 103 KIAA, pers comm, 2021
- 104 DAFF in litt. to TRAFFIC, 2022.
- 105 https://www.publish.csiro.au/book/5697/
- 106 https://www.agrifutures.com.au/product/new-animal-products-new-uses-and-markets-for-co-by-products-of-crocodile-emu-goatkangaroo-and-rabbit/
- 107 https://www.awe.gov.au/biosecurity-trade/export/controlled-goods/meat/elmer-3/microbiological-manual
- 108 Thomas, C. (2010). Product Traceability Solutions for the Kangaroo Industry. Australian Agricultural and Resource Economics Society. National Conference 2010.
- 109 KIAA, pers comm, 2021.

- 110 KIAA, pers comm, 2021
- 111 EU Commission. (2019). Final Report of an Audit Carried out in Australia in order to assess the implementation of the corrective export to the European Union. Directorate General for Health and Food Safety.
- 112 DAFF in litt. to TRAFFIC, 2022.
- Journal of Rural Law and Policy, (2), pp.1-19.
- 114 https://animalsaustralia.org/latest-news/kangaroo-shooting/
- comes and avoids waste. Australian Zoologist, 40(1), 181-202.
- agement: a joint statement. Ecological Management & Restoration, 22, 186-192.
- 117 Karombo, L. (2019) South African ostrich farmers try new strategies to stay afloat. The Poultry Site, 20 May 2019.
- 118 Barends-Jones, V. & Pienaar, L. (2020). The South African Ostrich Industry Footprint. Western Cape Government, Agriculture.
- 119 https://www.nda.agric.za/doaDev/sideMenu/Marketing/Annual%20Publications/Commodity%20Profiles/Ostrich%20Market%20 Value%20Chain%20Profile%202017.pdf
- 121 Quantec. (2019). International Trade Service: RSA National Trade. Pretoria: Quantec.
- Value%20Chain%20Profile%202017.pdf
- Pathology, 27, 117-120.
- za in ostriches. Avian diseases, 60(1s), 286-295.
- 125 Abolnik, C. (2017). History of Newcastle disease in South Africa. Onderstepoort Journal of Veterinary Research, 84(1), 1-7.
- 126 https://www.nda.agric.za/doaDev/sideMenu/Marketing/Annual%20Publications/Commodity%20Profiles/Ostrich%20Market%20 Value%20Chain%20Profile%202017.pdf
- 127 Venter, M., Treurnicht, F. K., Buys, A., Tempia, S., Samudzi, R., McAnerney, J., ... & Blumberg, L. (2017). Risk of human infections Journal of infectious diseases, 216 (suppl_4), S512-S519.
- 128 https://www.who.int/docs/default-source/wpro---documents/emergency/surveillance/avian-influenza/ ai-20220204805e8ba915ef4c16920ae7f3d2a1bdae.pdf?sfvrsn=30d65594_203
- 129 https://www.ecdc.europa.eu/en/zoonotic-influenza/facts/faq-avian-influenza
- 130 Shinya, K., Makino, A., Ozawa, M., Kim, J. H., Sakai-Tagawa, Y., Ito, M., ... & Kawaoka, Y. (2009). Ostrich involvement in the selection
- 131 Long, J. S., Giotis, E. S., Moncorgé, O., Frise, R., Mistry, B., James, J., ... & Barclay, W. S. (2016). Species difference in ANP32A underlies influenza A virus polymerase host restriction. Nature, 529(7584), 101-104.
- 132 Moore, C., Cumming, G. S., Slingsby, J., & Grewar, J. (2014). Tracking socioeconomic vulnerability using network analysis: insights from an avian influenza outbreak in an ostrich production network. PLoS One, 9(1), e86973.
- 133 Abolnik, C., Olivier, A., Reynolds, C., Henry, D., Cumming, G., Rauff, D., ... & Falch, C. (2016). Susceptibility and status of avian influenza in ostriches. Avian diseases, 60(1s), 286-295.
- 134 Venter, M., Treurnicht, F. K., Buys, A., Tempia, S., Samudzi, R., McAnerney, J., ... & Blumberg, L. (2017). Risk of human infections Journal of infectious diseases, 216(suppl_4), S512-S519.
- 135 https://doi.org/10.1016/j.prevetmed.2021.105474
- 136 https://www.who.int/news-room/fact-sheets/detail/influenza-(avian-and-other-zoonotic)#.~:text=Humans%20can%20be%20 infected%20with,)%20and%20A(H3N2).
- 137 Mather, C., & Marshall, A. (2011). Living with disease? Biosecurity and avian influenza in ostriches. Agriculture and Human Values, 28(2), 153-165
- za in ostriches. Avian diseases, 60(1s), 286-295.
- 139 Coetzee, pers comm, 2021.
- 28(2), 153-165.
- za in ostriches. Avian diseases, 60(1s), 286-295.

actions taken following audits on the controls over the production of red meat, game meat, milk and dairy products intended for

113 Boom, K., Ami, B., Boronyak, L. and Riley, S. (2013). The role of inspections in the commercial kangaroo industry. International

115 Wilson, G. R., & Edwards, M. (2019). Professional kangaroo population control leads to better animal welfare, conservation out-

116 Read, J. L., Wilson, G. R., Coulson, G., Cooney, R., Paton, D. C., Moseby, K. E., ... & Edwards, M. J. (2021). Improving kangaroo man-

120 Barends-Jones, V. & Pienaar, L. (2020). The South African Ostrich Industry Footprint. Western Cape Government, Agriculture.

122 https://www.nda.agric.za/doaDev/sideMenu/Marketing/Annual%20Publications/Commodity%20Profiles/Ostrich%20Market%20

123 Capua, I. (1998). Crimean-Congo haemorrhagic fever in ostriches: A public health risk for countries of the European Union?. Avian

124 Abolnik, C., Olivier, A., Reynolds, C., Henry, D., Cumming, G., Rauff, D., ... & Falch, C. (2016). Susceptibility and status of avian influen-

with highly pathogenic H5N2 and low pathogenic H7N1 avian influenza strains during outbreaks in ostriches in South Africa. The

of H5N1 influenza virus possessing mammalian-type amino acids in the PB2 protein. Journal of virology, 83(24), 13015-13018.

with highly pathogenic H5N2 and low pathogenic H7N1 avian influenza strains during outbreaks in ostriches in South Africa. The

138 Abolnik, C., Olivier, A., Reynolds, C., Henry, D., Cumming, G., Rauff, D., ... & Falch, C. (2016). Susceptibility and status of avian influen-

140 Mather, C., & Marshall, A. (2011). Living with disease? Biosecurity and avian influenza in ostriches. Agriculture and Human Values,

141 Abolnik, C., Olivier, A., Reynolds, C., Henry, D., Cumming, G., Rauff, D., ... & Falch, C. (2016). Susceptibility and status of avian influen-

- 142 Potgieter, pers comm, 2021.
- 143 Peter Coetzee and Anel Engelbrecht, pers comm, 2021.
- 144 Abolnik, C., Olivier, A., Reynolds, C., Henry, D., Cumming, G., Rauff, D., ... & Falch, C. (2016). Susceptibility and status of avian influenza in ostriches. Avian diseases, 60(1s), 286-295.
- 145 Peter Coetzee and Joey Potgieter, pers comm, 2021.
- 146 Moore, C., Cumming, G. S., Slingsby, J., & Grewar, J. (2014). Tracking socioeconomic vulnerability using network analysis: insights from an avian influenza outbreak in an ostrich production network. PLoS One, 9(1), e86973.
- 147 Adriaan Olivier, pers comm, 2021.
- 148 Adriaan Olivier, Peter Coetzee and Joey Potgieter, pers comm, 2021.
- 149 VPN/04/2012-01 (Revision 6). Department of Agriculture, Forestry and Fisheries National Directorate Animal Health. Standard for the requirements, registration, maintenance of registration and official control of ostrich compartments in South Africa. 2 July 2012.
- 150 https://www.nda.agric.za/doaDev/sideMenu/Marketing/Annual%20Publications/Commodity%20Profiles/Ostrich%20Market%20 Value%20Chain%20Profile%202017.pdf
- 151 VPN/04/2012-01 (Revision 6). Department of Agriculture, Forestry and Fisheries National Directorate Animal Health. Standard for the requirements, registration, maintenance of registration and official control of ostrich compartments in South Africa. 2 July 2012.
- 152 [1]DG SANCO. (2007). Final Report of a Mission Carried Out in South Africa from 10 to 20 September 2007 in Order to Evaluate the Control Systems in Place (Including Animal Health, Animal Welfare and Public Health Aspects) Governing Ratite Meat Intended for Export to the EU.
- 153 DG SANTE. (2016). Final Report of An Audit Carried Out in South Africa from 07 June 2016 to 15 June 2016 in Order to Evaluate the Animal Health Controls in Place for Ratites for Breeding and Production, Including Hatching Eggs and Day-Old Chicks Thereof, And for Meat from Farmed Ratites That Are Intended for Export to The European Union.
- 154 Al-Khalifa, H., & Al-Naser, A. (2014). Ostrich meat: Production, guality parameters, and nutritional comparison to other types of meats. Journal of Applied Poultry Research, 23(4), 784-790.
- 155 Chakanya, C., Arnaud, E., Muchenje, V., & Hoffman, L. C. (2020). Fermented meat sausages from game and venison: What are the opportunities and limitations? Journal of the Science of Food and Agriculture, 100(14), 5023-5031.
- 156 Figuié, M., & Malivel, R. (2017). La consommation de viande de chasse en France et en Europe. 21.
- 157 https://www.chasseurdefrance.com/decouvrir/venaison/
- 158 https://www.tridge.com/intelligences/venison
- 159 https://doi.org/10.3390/microorganisms9030649
- 160 https://doi.org/10.1111/tbed.13756
- 161 https://doi.org/10.2903/j.efsa.2019.5863
- 162 https://doi.org/10.1186/s13567-016-0375-4
- 163 https://www.avma.org/resources/public-health/disease-precautions-hunters
- 164 Ramanzin, Maurizio, Andrea Amici, Carmen Casoli, Luigi Esposito, Paola Lupi, Giuseppe Marsico, Silvana Mattiello, et al. 2010. 'Meat from Wild Ungulates: Ensuring Quality and Hygiene of an Increasing Resource'. Italian Journal of Animal Science 9 (3): e61
- 165 Coburn, H. L., E. L. Snary, L. A. Kelly, and M. Wooldridge. 2005. 'Qualitative Risk Assessment of the Hazards and Risks from Wild Game'. The Veterinary Record 157 (11): 321-22.
- 166 Ramanzin, Maurizio, Andrea Amici, Carmen Casoli, Luigi Esposito, Paola Lupi, Giuseppe Marsico, Silvana Mattiello, et al. 2010. 'Meat from Wild Ungulates: Ensuring Quality and Hygiene of an Increasing Resource'. Italian Journal of Animal Science 9 (3): e61.
- 167 https://doi.org/10.1007/s10344-007-0098-y
- 168 In the French administrative system, a "department" is one of three levels of government under the national level. A department is in between the level of a region and the level of a commune.
- 169 https://www.chasse38.com/decouvrir-la-chasse-en-isere-2/les-especes-chassables/
- 170 http://www.gibier-de-chasse.com/trouver/aupres-des-chasseurs1.html
- 171 https://www.fdc62.com/images/Infos-pratiques/venaison/fiche-accompagnement-gibier.jpg
- 172 Jobard, E., Marquay, J., Prigent, Q., Radureau, S., & des Robert, M.-L. (2016). Evaluation du service écosystémique chasse en 2015. BIPE.
- 173 https://www.fdc62.com/images/Infos-pratiques/venaison/fiche-accompagnement-gibier.jpg
- 174 https://manualzz.com/doc/5099917/fiches-d-accompagnement-du-gibier
- 175 La Fédération Régionale des Chasseurs d'Île-de-France. 2017. Valorisation de La Venaison En Île-de-France: Synthèse Du Projet à Mi-Parcours'
- 176 Gavillet, Par Victoria. 2016. 'Réflexion sur la structuration d'une filière de valorisation de la venaison en sud Lozère', 140.

- 177 http://www.gibier-de-chasse.com/trouver/aupres-des-chasseurs1.html 178 Mark Ryan, pers comm, 2021.
- 179 Figuié, M., & Malivel, R. (2017). La consommation de viande de chasse en France et en Europe. 21.
- 180 https://www.dw.com/en/coronavirus-a-death-sentence-for-chinas-live-animal-markets/a-56986431
- 181 https://link.springer.com/article/10.1007/s10745-019-0061-z
- 182 https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-019-7067-8
- 183 https://oecd-events.org/gacif2021/session/74683416-c971-eb11-9889-000d3a20eda5
- 184 https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-019-7067-8
- 185 https://www.tawa.go.tz/fileadmin/user_upload/GAME_MEAT_SELLING_REGULATIONS_2020.pdf
- 186 https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-019-7067-8
- 187 https://oecd-events.org/gacif2021/session/74683416-c971-eb11-9889-000d3a20eda5
- 188 https://ideas.repec.org/a/ags/jloagb/14666.html
- 189 https://ideas.repec.org/a/ags/jloagb/14666.html
- 190 https://thediplomat.com/2019/07/the-battle-to-curb-swine-fever-in-southeast-asia/
- 191 https://thediplomat.com/2019/07/the-battle-to-curb-swine-fever-in-southeast-asia/
- 192 https://unctad.org/system/files/official-document/webditcted2016d7_en.pdf
- 193 https://pubsonline.informs.org/doi/10.1287/msom.2017.0685
- 194 http://www.viet-studies.net/kinhte/FoodSafetyHanoi_Apri2019.pdf
- 195 https://www.researchgate.net/publication/233339322_Chinese_Consumers'_Concerns_About_Food_Safety
- 196 https://www.sciencedirect.com/science/article/abs/pii/S0956713520300736
- 197 https://portals.iucn.org/library/node/49880
- 198 https://www.biomin.net/us/species/poultry/salmonellosis-in-poultry/
- 199 https://agrifutures.com.au/wp-content/uploads/2021/09/21-036.pdf
- 200 https://www.scientificamerican.com/article/a-crucial-step-toward-preventing-wildlife-related-pandemics/
- 201 https://data.jncc.gov.uk/data/964ae259-410e-4205-8ec7-e2c54f5c6e3d/JNCC-Report-678-FINAL-WEB.pdf
- 202 https://cites.org/sites/default/files/eng/com/sc/74/E-SC74-16.pdf
- 203 https://cites.org/sites/default/files/notifications/E-Notif-2021-031.pdf
- 204 https://cites.org/sites/default/files/eng/cop/18/doc/E-CoP18-042--R1.pdf
- 205 https://www.woah.org/app/uploads/2021/03/a-wildlifehealth-conceptnote.pdf
- 206 https://www.tawa.go.tz/fileadmin/user_upload/GAME_MEAT_SELLING_REGULATIONS_2020.pdf
- 207 Tanzania Wildlife Management Authority communication, February 2022.
- 208 https://globescan.com/wp-content/uploads/2021/05/WWF-GlobeScan-COVID19_One_Year_Later-Full_Report-May2021-1.pdf 209 https://www.biorxiv.org/content/10.1101/2020.06.05.098590v3
- 210 https://static1.squarespace.com/static/5c7d60a711f7845f734d4a73/t/5e71676b1e329d733c2fdc24/1584490349404/CASE+-STUDY-SURVEILLANCE-VIETNAM+WILDLIFE+FARM.pdf
- 211 https://www.researchgate.net/publication/248200458_The_conservation_impact_of_commercial_wildlife_farming_of_porcupines_ in_Vietnam
- 212 https://www.fao.org/fileadmin/user_upload/FAO-countries/Vietnam/docs/Pdf_files/FINAL_wildlife_farm_factsheet_EN.pdf 213 https://www.nda.agric.za/doaDev/sideMenu/Marketing/Annual%20Publications/Commodity%20Profiles/Ostrich%20Market%20
- Value%20Chain%20Profile%202017.pdf
- 214 https://tinyurl.com/56ke5ujn
- 215 Joey Potgieter, pers comm, 2021.
- Value%20Chain%20Profile%202017.pdf
- 217 Adriaan Olivier, pers comm, 2021
- Value%20Chain%20Profile%202017.pdf
- 219 Gutteridge and Liow, pers comm, 2021.

216 https://www.nda.agric.za/doaDev/sideMenu/Marketing/Annual%20Publications/Commodity%20Profiles/Ostrich%20Market%20

218 https://www.nda.agric.za/doaDev/sideMenu/Marketing/Annual%20Publications/Commodity%20Profiles/Ostrich%20Market%20

- 220 Gutteridge and Liow, pers comm, 2021.
- 221 The FIP website that monitors and evaluates FIP progress may be of interest as a structured improvement model. Note that demand is high for responsibly sourced seafood, which has resulted in demand for rigorous improvement monitoring mechanisms: https://fisheryprogress.org/
- 222 Gutteridge and Liow, pers comm, 2021.
- 223 Gutteridge and Liow, pers comm, 2021.
- 224 Gutteridge and Liow, pers comm, 2021.
- 225 Gutteridge and Liow, pers comm, 2021.
- 226 Gutteridge and Liow, pers comm, 2021.
- 227 https://www.traffic.org/sharktrace/
- 228 http://abalobi.info/
- 229 https://www.fairwild.org/about-us
- 230 https://www.fairwild.org/fairwild-for-producers
- 231 https://www.fairwild.org/potential-operators

IMAGE CREDITS

Cover	Manuel Lopez / CIFOR / Flickr
2	Qudra Kagembe / TRAFFIC
7	TRAFFIC
10	Martin Andimile / TRAFFIC
16	iStock
19	Ola Jennersten / WWF-Sweden
23	iStock
25	iStock
26	Egle Sidaraviciute / Unsplash
28	Shaun Swingler / Longshot Productions / TRAFFIC
31	Kangaroo and Ostrich - Pixabay, Red Deer Luc Viate
34	iStock
37	JJ Harrison / Wikimedia Commons
39	Alpha / Flickr
44	Maria Orlova / Pexels
50	iStock
54	Brent Stirton Getty Images WWF-UK
57	iStock

tour / Wikimedia Commons

JULY 2022

TRAFFIC is a leading non-governmental organisation working globally on trade in wild animals and plants in the context of both biodiversity conservation and sustainable development.

For further information contact:

TRAFFIC David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ

+44(0)1223 331 997 traffic@traffic.org traffic.org

UK Registered Charity No. 1076722, Registered Limited Company No. 3785518.

TRAFFIC +44(0)1223 331 997 traffic@traffic.org traffic.org